52 research outputs found

    Effect of Phase Delay on Low Frequency Operation of Flux Focusing Eddy Current Probe

    Get PDF
    The operation of the Flux Focusing Eddy Current Probe has been found to yield critical information on the thickness of the material being inspected [1–2]. The design of the probe forces the low frequency magnetic fields to diffuse through the sample in order to link with the pickup coil. An attenuation of the magnetic field results such that the pickup coil output is inversely related to the material thickness [2]. In extending the technique to thicker and/or layered materials, however, an apparently anomalous behavior is sometimes seen in which a small increase in the probe output occurs with increasing material thickness. This paper will clarify the underlying principles involved with the probe during low frequency operation and explain the apparent anomaly in terms of the phase shifting of the magnetic field with diffusion depth. A phasor addition model will be presented which accounts for the observed experimental results, and implications of the phenomena on material testing will be discussed

    Application of Eddy Current Techniques for Orbiter Reinforced Carbon-Carbon Structural Health Monitoring

    Get PDF
    The development and application of advanced nondestructive evaluation techniques for the Reinforced Carbon-Carbon (RCC) components of the Space Shuttle Orbiter Leading Edge Structural Subsystem (LESS) was identified as a crucial step toward returning the shuttle fleet to service. In order to help meet this requirement, eddy current techniques have been developed for application to RCC components. Eddy current technology has been found to be particularly useful for measuring the protective coating thickness over the reinforced carbon-carbon and for the identification of near surface cracking and voids in the RCC matrix. Testing has been performed on as manufactured and flown RCC components with both actual and fabricated defects representing impact and oxidation damage. Encouraging initial results have led to the development of two separate eddy current systems for in-situ RCC inspections in the orbiter processing facility. Each of these systems has undergone blind validation testing on a full scale leading edge panel, and recently transitioned to Kennedy Space Center to be applied as a part of a comprehensive RCC inspection strategy to be performed in the orbiter processing facility after each shuttle flight

    Development of Eddy Current Technique for the Detection of Stress Corrosion Cracking in Space Shuttle Primary Reaction Control Thrusters

    Get PDF
    A recent identification of stress corrosion cracking in the Space Shuttle Primary Reaction Control System (PRCS) thrusters triggered an extensive nondestructive evaluation effort to develop techniques capable of identifying such damage on installed shuttle hardware. As a part of this effort, specially designed eddy current probes inserted into the acoustic cavity were explored for the detection of such flaws and for evaluation of the remaining material between the crack tip and acoustic cavity. The technique utilizes two orthogonal eddy current probes which are scanned under stepper motor control in the acoustic cavity to identify cracks hidden with as much as 0.060 remaining wall thickness to the cavity. As crack growth rates in this area have been determined to be very slow, such an inspection provides a large safety margin for continued operation of the critical shuttle hardware. Testing has been performed on thruster components with both actual and fabricated defects. This paper will review the design and performance of the developed eddy current inspection system. Detection of flaws as a function of remaining wall thickness will be presented along with the proposed system configuration for depot level or on-vehicle inspection capabilities

    Eddy Current System for Detection of Cracking Beneath Braiding in Corrugated Metal Hose

    Get PDF
    In this paper an eddy current system for the detection of partially-through-the-thickness cracks in corrugated metal hose is presented. Design criteria based upon the geometry and conductivity of the part are developed and applied to the fabrication of a prototype inspection system. Experimental data are used to highlight the capabilities of the system and an image processing technique is presented to improve flaw detection capabilities. A case study for detection of cracking damage in a space shuttle radiator retract flex hoses is also presented

    Optimization of Self-Nulling Eddy Current Probe for the Detection of Shallow Fatigue Cracks

    Get PDF
    The Self-Nulling Eddy Current Probe has been the focus of much research during the past several years [1–7]. Developed under NASA’s Airframe Structural Integrity Program, past research has focused on applying the Self-Nulling Probe technology to the inspection of damage to thin aluminum airframe skins. As a result of this work prototype fatigue crack detectors, single and multi-layer thickness gauges, and a system for the detection of cracks under installed fasteners have been developed[l–2,5–7]. The probe has also been successful at detecting surface flaws in thick bulk materials, for which a commercial instrument has been produced and marketed by Kramer Branson, Inc.-This paper will explore the fatigue crack detection mechanism of the Self-Nulling Probe for shallow flaws in thick materials as compared to that of through cracks in thin skins. The resulting change in the performance of the Self-Nulling Probe will then be detailed, and proposed modifications to optimize the performance of the probe for the detection of shallow fatigue cracks enumerated

    A Tool Measuring Remaining Thickness of Notched Acoustic Cavities in Primary Reaction Control Thruster NDI Standards

    Get PDF
    Stress corrosion cracking in the relief radius area of a space shuttle primary reaction control thruster is an issue of concern. The current approach for monitoring of potential crack growth is nondestructive inspection (NDI) of remaining thickness (RT) to the acoustic cavities using an eddy current or remote field eddy current probe. EDM manufacturers have difficulty in providing accurate RT calibration standards. Significant error in the RT values of NDI calibration standards could lead to a mistaken judgment of cracking condition of a thruster under inspection. A tool based on eddy current principle has been developed to measure the RT at each acoustic cavity of a calibration standard in order to validate that the standard meets the sample design criteria

    Development of Eddy Current Techniques for the Detection of Cracking in Space Shuttle Primary Reaction Control Thrusters

    Get PDF
    A recent identification of cracking in the Space Shuttle Primary Reaction Control System (PRCS) thrusters triggered an extensive nondestructive evaluation effort to develop techniques capable of identifying such damage on installed shuttle hardware. As a part of this effort, specially designed eddy current probes inserted into the acoustic cavity were explored for the detection of such flaws and for evaluation of the remaining material between the crack tip and acoustic cavity. The technique utilizes two orthogonal eddy current probes which are scanned under stepper motor control in the acoustic cavity to identify cracks hidden with as much as 0.060 remaining wall thickness to the cavity. As crack growth rates in this area have been determined to be very slow, such an inspection provides a large safety margin for continued operation of the critical shuttle hardware. Testing has been performed on thruster components with both actual and fabricated defects. This paper will review the design and performance of the developed eddy current inspection system. Detection of flaws as a function of remaining wall thickness will be presented along with the proposed system configuration for depot level or on-vehicle inspection capabilities

    Issues on Reproducibility/Reliability of Magnetic NDE Methods

    Get PDF
    One of the critical elements related to the practicality of any NDE technique is its reproducibility under nominally the same inspection conditions. The results of certain test methodologies, however, are not always repeatable and understanding the origin of the irreproducibility is often as critical as obtaining reproducible results. One example is the characterization of residual stress in structural ferromagnets using the magnetoacoustic (MAC) method [1]. Although it has not been widely publicized, the test results of this method are known to be time-dependent. Two distinct types of time dependencies have been observed during testing. The first type has a clearly definable relaxation time, while no such trend has been observed for the second

    Finite Element Modeling of the Bulk Magnetization of Railroad Wheels to Improve Test Conditions for Magnetoacoustic Residual Stress Measurements

    Get PDF
    The magnetoacoustic measurement technique has been used successfully for residual stress measurements in laboratory samples[l-4]. However, when used to field test samples with complex geometries, such as railroad wheels, the sensitivity of the method declines dramatically[5,6]. It has been suggested that the decrease in performance may be due, in part, to an insufficient or nonuniform magnetic induction in the test sample[6]. The purpose of this paper is to optimize the test conditions by using finite element modeling to predict the distribution of the induced bulk magnetization of railroad wheels. The results suggest that it is possible to obtain a sufficiently large and uniform bulk magnetization by altering the shape of the electromagnet used in the tests. Consequently, problems associated with bulk magnetization can be overcome, and should not prohibit the magnetoacoustic technique from being used to make residual stress measurements in railroad wheels

    Analysis of the mutual inductance between two parallel plates for the detection of surface flaws

    Get PDF
    There has recently been much effort behind the development of NDE methods applicable to the detection of surface/subsurface flaws in thin metallic structures with a rapid scan capability. One such method, an electromagnetic technique using a current-sheet parallel to the surface of a specimen in order to induce eddy current flow shows a high potential for satisfying the rapid scan requirement stated above. The technique is based on the detection of flaw-induced magnetic field components normal to the specimen surface by an appropriate detection mechanism positioned above the current-sheet as shown schematically in Fig. 1. As indicated in this figure, the current-sheet separates the source of the normal magnetic field components from the detector in such a way that the electric and magnetic properties of the current-sheet can be a major factor affecting the strength of the detected signals. The purpose of the present study is, therefore, to perform a detailed investigation on the effect of the material properties of the current-sheet on the detected signal strength and to establish a simple theoretical model for the detection mechanism
    • …
    corecore