3,840 research outputs found

    High Temperature Epoxy Composites for Material Extrusion Additive Manufacturing

    Get PDF
    The geometric design freedom, short lead time, and customization make additive manufacturing (AM) increasingly popular. In addition to rapid prototyping and three-dimensional molds, additive manufacturing has created wind turbine blades, robotic arms, and custom medical implants. Major manufacturing companies such as Porsche and Aetrex are utilizing AM to customize automotive seats and orthopedic footwear. However, available materials limit AM applications. Currently, the high-temperature requirements from the aerospace and automotive industries provide additional, unmet challenges. Many high-temperature epoxies have high pre-polymer viscosities and produce highly exothermic cure reactions, which limits volumetric scaling. Traditionally, fast, high-temperature processing reduces the viscosity, filling a mold before crosslinking initiation; however, this is not possible for AM. Currently, epoxy-fiber composites replace many traditional materials, such as aluminum, in applications where their high strength-to-weight ratios reduce lifetime energy costs. Fiber composites are limited by current fabrication methods, which can be expensive with limited geometric adaptability. Direct ink write (DIW) AM extrudes viscoelastic feedstock, creating parts layer-by-layer. The ink feedstock can readily incorporate fibers while AM produces parts without a mold reducing start-up requirements. This work develops a high temperature, heated cure epoxy feedstock for DIW applications achieving strength and modulus values of 145 MPa and 4.9 GPa, respectively. Two pre-polymers are combined, to maintain a glass transition temperature upwards of 285°C while reducing the viscosity. A heated deposition system requires understanding the thermal viscosity and cure profiles. With a viscosity of 5.4 Pa.s and an 18-hour pot life, 70°C allows for shear flow without premature cure during extrusion. An upper loading limit of 30 vol% glass fibers was determined. The fibers improve the heat deflection temperature by 100°C to 320°C and yield a 160% increase in flexure modulus; however, a 34% reduction in strength occurs. While processing did not decrease the fiber length as observed with carbon, the initial distribution contained 15% of fibers shorter than the critical length. The short fibers and pores that arose from both processing and dissimilar fiber-matrix expansion can account for the reduction. This work aims to develop a hightemperature fiber-filled feedstock while broadly considering print and extrusion parameters of viscous inks

    Nucleus accumbens activation mediates the influence of reward cues on financial risk-taking

    Get PDF
    In functional magnetic resonance imaging (FMRI) research, nucleus accumbens (NAcc) activation spontaneously increases prior to financial risk taking. Since anticipation of diverse rewards can increase NAcc activation, even incidental reward cues may influence financial risk-taking. Using event-related FMRI, we predicted and found that anticipation of viewing rewarding stimuli (erotic pictures for 15 heterosexual males) increased financial risk taking, and that this effect was partially mediated by increases in NAcc activation. These results are consistent with the notion that incidental reward cues influence financial risk taking by altering anticipatory affect, and so identify a neuropsychological mechanism that may underlie effective emotional appeals in financial, marketing, and political domains.neuroeconomics, neurofinance, brain, financial risk taking, risk preferences, decision making, nucleus accumbens, striatum, reward cues, FMRI, brain imaging

    Interfaces Within Graphene Nanoribbons

    Get PDF
    We study the conductance through two types of graphene nanostructures: nanoribbon junctions in which the width changes from wide to narrow, and curved nanoribbons. In the wide-narrow structures, substantial reflection occurs from the wide-narrow interface, in contrast to the behavior of the much studied electron gas waveguides. In the curved nanoribbons, the conductance is very sensitive to details such as whether regions of a semiconducting armchair nanoribbon are included in the curved structure -- such regions strongly suppress the conductance. Surprisingly, this suppression is not due to the band gap of the semiconducting nanoribbon, but is linked to the valley degree of freedom. Though we study these effects in the simplest contexts, they can be expected to occur for more complicated structures, and we show results for rings as well. We conclude that experience from electron gas waveguides does not carry over to graphene nanostructures. The interior interfaces causing extra scattering result from the extra effective degrees of freedom of the graphene structure, namely the valley and sublattice pseudospins.Comment: 19 pages, published version, several references added, small changes to conclusion

    Field emission at terahertz frequencies: AC-tunneling and ultrafast carrier dynamics

    Get PDF
    We demonstrate ultrafast terahertz (THz) field emission from a tungsten nanotip enabled by local field enhancement. Characteristic electron spectra which result from acceleration in the THz near-field are found. Employing a dual frequency pump–probe scheme, we temporally resolve different nonlinear photoemission processes induced by coupling near-infrared (NIR) and THz pulses. In the order of increasing THz field strength, we observe THz streaking, THz-induced barrier reduction (Schottky effect) and THz field emission. At intense NIR-excitation, the THz field emission is used as an ultrashort, local probe of hot electron dynamics in the apex. A first application of this scheme indicates a decreased carrier cooling rate in the confined tip geometry. Summarizing the results at various excitation conditions, we present a comprehensive picture of the distinct regimes in ultrafast photoemission in the near- and far-infrared

    Ettingshausen effect due to Majorana modes

    Get PDF
    The presence of Majorana zero-energy modes at vortex cores in a topological superconductor implies that each vortex carries an extra entropy s0s_0, given by (kB/2)ln2(k_{B}/2)\ln 2, that is independent of temperature. By utilizing this special property of Majorana modes, the edges of a topological superconductor can be cooled (or heated) by the motion of the vortices across the edges. As vortices flow in the transverse direction with respect to an external imposed supercurrent, due to the Lorentz force, a thermoelectric effect analogous to the Ettingshausen effect is expected to occur between opposing edges. We propose an experiment to observe this thermoelectric effect, which could directly probe the intrinsic entropy of Majorana zero-energy modes.Comment: 16 pages, 3 figure

    Applying monitoring, verification, and accounting techniques to a real-world, enhanced oil recovery operational CO2 leak

    Get PDF
    AbstractThe use of carbon dioxide (CO2) for enhanced oil recovery (EOR) is being tested for oil fields in the Illinois Basin, USA. While this technology has shown promise for improving oil production, it has raised some issues about the safety of CO2 injection and storage. The Midwest Geological Sequestration Consortium (MGSC) organized a Monitoring, Verification, and Accounting (MVA) team to develop and deploy monitoring programs at three EOR sites in Illinois, Indiana, and Kentucky, USA. MVA goals include establishing baseline conditions to evaluate potential impacts from CO2 injection, demonstrating that project activities are protective of human health and the environment, and providing an accurate accounting of stored CO2. This paper focuses on the use of MVA techniques in monitoring a small CO2 leak from a supply line at an EOR facility under real-world conditions.The ability of shallow monitoring techniques to detect and quantify a CO2 leak under real-world conditions has been largely unproven. In July of 2009, a leak in the pipe supplying pressurized CO2 to an injection well was observed at an MGSC EOR site located in west-central Kentucky. Carbon dioxide was escaping from the supply pipe located approximately 1 m underground. The leak was discovered visually by site personnel and injection was halted immediately. At its largest extent, the hole created by the leak was approximately 1.9 m long by 1.7 m wide and 0.7 m deep in the land surface. This circumstance provided an excellent opportunity to evaluate the performance of several monitoring techniques including soil CO2 flux measurements, portable infrared gas analysis, thermal infrared imagery, and aerial hyperspectral imagery.Valuable experience was gained during this effort. Lessons learned included determining (1) hyperspectral imagery was not effective in detecting this relatively small, short-term CO2 leak, (2) even though injection was halted, the leak remained dynamic and presented a safety risk concern during monitoring activities and, (3) the atmospheric and soil monitoring techniques used were relatively cost-effective, easily and rapidly deployable, and required minimal manpower to set up and maintain for short-term assessments. However, characterization of CO2 distribution near the land surface resulting from a dynamic leak with widely variable concentrations and fluxes was challenging

    Clocking plasmon nanofocusing by THz near-field streaking

    Get PDF

    Improved Constraints on the Preferential Heating and Acceleration of Oxygen Ions in the Extended Solar Corona

    Full text link
    We present a detailed analysis of oxygen ion velocity distributions in the extended solar corona, based on observations made with the Ultraviolet Coronagraph Spectrometer (UVCS) on the SOHO spacecraft. Polar coronal holes at solar minimum are known to exhibit broad line widths and unusual intensity ratios of the O VI 1032, 1037 emission line doublet. The traditional interpretation of these features has been that oxygen ions have a strong temperature anisotropy, with the temperature perpendicular to the magnetic field being much larger than the temperature parallel to the field. However, recent work by Raouafi and Solanki suggested that it may be possible to model the observations using an isotropic velocity distribution. In this paper we analyze an expanded data set to show that the original interpretation of an anisotropic distribution is the only one that is fully consistent with the observations. It is necessary to search the full range of ion plasma parameters to determine the values with the highest probability of agreement with the UVCS data. The derived ion outflow speeds and perpendicular kinetic temperatures are consistent with earlier results, and there continues to be strong evidence for preferential ion heating and acceleration with respect to hydrogen. At heliocentric heights above 2.1 solar radii, every UVCS data point is more consistent with an anisotropic distribution than with an isotropic distribution. At heights above 3 solar radii, the exact probability of isotropy depends on the electron density chosen to simulate the line-of-sight distribution of O VI emissivity. (abridged abstract)Comment: 19 pages (emulateapj style), 13 figures, ApJ, in press (v. 679; May 20, 2008
    corecore