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ABSTRACT 

 

The geometric design freedom, short lead time, and customization make additive 

manufacturing (AM) increasingly popular.  In addition to rapid prototyping and three-dimensional 

molds, additive manufacturing has created wind turbine blades, robotic arms, and custom medical 

implants.  Major manufacturing companies such as Porsche and Aetrex are utilizing AM to 

customize automotive seats and orthopedic footwear.   However, available materials limit AM 

applications.  Currently, the high-temperature requirements from the aerospace and automotive 

industries provide additional, unmet challenges. 

Many high-temperature epoxies have high pre-polymer viscosities and produce highly 

exothermic cure reactions, which limits volumetric scaling.  Traditionally, fast, high-temperature 

processing reduces the viscosity, filling a mold before crosslinking initiation; however, this is not 

possible for AM.  Currently, epoxy-fiber composites replace many traditional materials, such as 

aluminum, in applications where their high strength-to-weight ratios reduce lifetime energy costs.  

Fiber composites are limited by current fabrication methods, which can be expensive with limited 

geometric adaptability.  Direct ink write (DIW) AM extrudes viscoelastic feedstock, creating parts 

layer-by-layer. The ink feedstock can readily incorporate fibers while AM produces parts without 

a mold reducing start-up requirements. 

This work aims to develop a high-temperature fiber-filled feedstock while broadly 

considering print and extrusion parameters of viscous inks.  Two pre-polymers are combined, to 

maintain a glass transition temperature upwards of 285°C while reducing the viscosity.  A heated 

deposition system requires understanding the thermal viscosity and cure profiles.  With a viscosity 

of 5.4 Pa.s and an 18-hour pot life, 70°C allows for shear flow without premature cure during 

extrusion.  This formulation achieves strength and modulus values of 145 MPa and 4.9 GPa, 

respectively.  An upper loading limit of 30 vol% glass fibers was determined.  The fibers improve 

the heat deflection temperature by 100°C to 320°C and yield a 160% increase in flexure modulus; 

however, a 34% reduction in strength occurs.   While processing did not decrease the fiber length 

as observed with carbon, the initial distribution contained 15% of fibers shorter than the critical 

length.  The short fibers and pores that arose from both processing and dissimilar fiber-matrix 

expansion can account for the reduction.   
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CHAPTER ONE 

INTRODUCTION AND MOTIVATION 

 

This chapter details general background on additive manufacturing, specifically direct-ink 

write applications, and fiber composites.  It provides both historical and current work to give 

context and motivate current work.  

1.1.  Additive Manufacturing  

First developed in the mid-1980’s, additive manufacturing (AM, 3-D printing) allows for 

production of near-net shape parts by building material layer by layer [1-3].  Initially developed for 

rapid prototyping, AM has since found applications for specialty parts, low volume production, and 

custom, lightweight molds [4, 5].  While polymeric materials are most common with the advent of 

the personal printer [2], ceramic [6], metal [7], medical [8, 9], and food [10] applications exist.  

Additive manufacturing creates near net-shape products, reduces material consumption by 

selective infills, and allows for on-site production.  All of which lower both the cost and carbon 

footprint by reducing material consumption and energy expenditure during production and 

transport [11].  At the 2013 State of the Union address, President Obama predicted that “3D 

printing has the potential to revolutionize the way we make almost everything” [12]. 

Although slower than established methods, such as injection molding, AM is quickly 

customizable and adaptable as additional machinery, such as molds which can be expensive, are 

not required.  Recently, AM has been called upon to produce parts combatting the global shortage 

of medical supplies required for COVID-19.  In Italy, the company Isinnova produced ventilator 

valves for respirators.  Within 24 hours, the valve was designed, built, and in use [13].  In the 

United States, businesses, universities, and the general public with 3-D printers were called upon 

to print parts for personal protection equipment to be delivered to local hospitals [14-16]. 

However, additive manufacturing remains is its infancy.  Challenges are still being 

determined and applications are limited, but growing.  A cost analysis conducted by Franchetti et 

al. considered total material, initial capital, time, energy, waste material, and labor costs to 

determine that for high volume production, current methods, such as injection molding, are less 

expensive above some break-even threshold [17].  Rather than directly competing with 
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established manufacturing methods, AM allows for the production of parts that previously was not 

possible.  Through topology optimization, material placement is optimized and only added where 

required [18].  For example, the company Jabil redesigned an impeller reducing 73 parts to a 

single unit [19].  AM is excellent for customized, difficult-to-machine parts for on-demand 

manufacturing [20].   

3D printing allows for remote areas to produce parts as needed, reducing transport time 

and cost.  A notable example is National Aeronautics and Space Administration (NASA) 

astronauts aboard the International Space Station (ISS) forming tools in space that were then 

recycled and reformed [21].  Corporations are finding ways to incorporate AM into current 

manufacturing methods.  Creating parts via AM allows for in-house production and a shorter lead 

time as Bell Helicopter demonstrated by reducing manufacturing time from 6 weeks to 2.5 days 

[20].  Companies such as Porsche [22, 23] and Aetrex [24] are capitalizing on the “complexity is 

free” feature to create custom parts to fit individual consumer needs.  Accounting for 18.2% of the 

total additive manufacturing market in 2017, the aerospace industry dominates a significant 

portion of the field [25].  Although these applications generally require metals for operating 

temperatures above 400dC, high temperature polymer matrix composites (PMC) can be easier 

to manufacture and reduce the overall weight of the structure making it an attractive alternative.  

As AM becomes more common for end-use applications [22, 26], high-performance printable 

materials must continue to be developed. 

Direct-ink writing (DIW), a type of material extrusion additive manufacturing, is used to 

fabricate components by extruding viscoelastic feedstock materials through deposition nozzles 

mounted to a computer-controlled multi-axis motion platform as depicted in figure 1. Although 

developed in the 1990s by Cima, Cesarano, and Calvert [27-30] and utilized to 3D-print a broad 

range of materials, from structural and functional ceramic slurries [31, 32], to conductive inks [33], 

to gels and biomaterials [34], DIW has recently found increased attention as a route to print 

structural thermoset polymers and thermoset polymer composites like epoxy resins [35-37], 

polyurea elastomers [38, 39], and vinyl ester resins [40].  In addition, recent work has focused on 

scaling up DIW of thermoset materials – which has traditionally been limited to benchtop hardware 

and printed items on the order of tens of millimeters to centimeters in dimension – to industrial 

level [41] with the goal of additive manufacturing of thermally-stable tooling and lightweight 

structural components [35].  This work will focus on DIW of a thermoset, specifically, a high 

temperature epoxy resin. [42] 

  



 

3 
 

 

Figure 1. Direct Ink Write Additive Manufacturing schematic [42]. 
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1.2.  Epoxy 

Epoxies are thermosets which means that they undergo an irreversible crosslinking 

reaction when heated unlike thermoplastics which melt and are recyclable.  This crosslinking 

leads to high chemical resistance, good dimensional stability, stiffness, and strength. However, 

for application in demanding aerospace environments, power electronics, and as tooling for high 

performance autoclave-cure composites, a glass transition temperature (Tg) above 200°C is 

required [43, 44].  Although additive manufacturing of high-temperature thermoplastics is being 

explored via fused filament fabrication (FFF) methods [45, 46], thermoplastics melt when heated 

and lack the long-term thermal stability that thermosets provide.  While some epoxies have been 

formulated for high-temperature coatings, the curing agent and cure profile largely impact the final 

thermal and mechanical properties by controlling the crosslinking density and degree of cure 

respectively [47].  High temperature epoxy work by Silva et al. achieved a Tg of 140 - 160°C [48] 

and 132°C was reached by Pierson et al [49].  High temperature epoxies are generally highly 

viscous and tend to produce highly exothermic cure reactions which complicate processing and 

scalability, as will be discussed in chapter 2.2.  However, epoxies present good fiber compatibility 

and are readily printable [37].  Other high temperature thermosets, such as bismaleimides, 

phenolic resins, and cyanate esters exist.  However, these can be difficult to process, brittle, 

require energy intensive cure schedules, and are toxic [50-53].  Figure 2 compares the glass 

transition temperature and modulus of selected epoxies, high temperature thermosets, and 

thermoplastics; filled markers indicate that the material has been printed. E [37, 43, 48, 49, 54-56], peek 

[9, 57-59], bmi  [50, 56, 60-62], pr [56, 63], ce[56, 64, 65], pps [45, 58], abs [66-69],pla [68, 70-72]. 

1.3.  Fiber Composites 

Commonly injection molded [73] or formed into woven fiber mats [74], traditional fiber 

composites play a large role in the manufacturing industry.  Epoxies are commonly used as the 

matrix for their strong fiber adhesion and good wetting properties [75].  They can be found in 

applications from lightweight alternative for sporting equipment to structural aerospace 

components [76-78].  Although fiber composites are more expensive than traditional structural 

materials – such as aluminum, steel, or wood – the lightweight design reduces lifetime energy 

costs [79]. 

As of current, work has focused on characterizing carbon fibers (CF) for DIW AM 

applications. [49, 66, 80, 81].  However, glass fibers (GF) are 5 – 10 times less expensive than 

their carbon counterparts [82], are IR transparent making them an excellent candidate for radome  
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Figure 2. Glass transition temperature vs. modulus for several polymers. Circles indicate epoxies, 
triangles are other thermosets, and squares are thermoplastics.  Filled markers indicate that the 
material is printed while unfilled points correspond to non-printed work. Refs: Epoxy (●) [37, 43, 
48, 49, 54 – 56], polyetheretherketone (PEEK, * ) [9, 57 - 59], bismaleimide (BMI, ▲) [50, 56, 60-
62], phenolic resin (◄) [56, 63], cyanide ester (►) [56, 64, 65], polyphenylene sulfide (PPS, x) [45, 
58], acrylonitrile butadiene styrene (ABS, ■) [66 – 69], and polyactic acid (PLA, ♦) [68, 70-72]. 
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applications [83], generally have strengths around 2,000 MPa and moduli of 80 GPa [84], and are 

stronger off-axis than carbon fibers [73].     

The design freedom and with the mold-free formation provided by AM will expand current 

fiber applications.  Love et al. noted that printed fiber composites have improved dimensional and 

thermal stability as compared to the neat polymer [66].  Fibers improve the strength and modulus 

by up to 115% and 700% as determined by Tekinalp et al. which allows for printing of load-bearing 

parts [85].  However, printed fiber composites have increased anisotropy and pores are common 

[86].  Despite this, printed composites are essential for improved mechanical properties of printed 

components. 

1.4.  Project Overview 

This work aims to develop and characterize a novel high temperature (Tg > 200°C) epoxy 

feedstock using commercially available resins for direct ink write additive manufacturing.  This will 

allow for automotive [87], aerospace [76], and autoclave mold [88] applications.  The addition of 

glass fibers will improve the both the thermal and mechanical properties [66, 89], enabling further 

uses for structural applications.  The work can be divided into three subsections: epoxy selection, 

formulation, and fiber incorporation.    

First, a viable epoxy resin for DIW is required.  Five commercial epoxies are considered 

and evaluated based on the Tg, cure behavior, and ease of processing.  Because a high glass 

transition temperature is achieved from low free volume, these resin precursors generally present 

high uncured viscosities which can limit extrusion processes.  However, none of the tested resins 

achieved a Tg above 200°C while meeting the printability requirements.  This required a blending 

of two resins to create a DIW feedstock.   

This work introduces a heated printing approach for a novel semi-solid high temperature 

epoxy-based ink that addresses several of the challenges associated with solvent-based printing 

and thermoplastic melt-based printing of polymer composites. A high-temperature solid resin and 

a lower-temperature liquid resin are blended in varying ratios with a latent curing agent to form a 

3D-printable system that possess a cured Tg above 200°C while remaining sufficiently inert at 

intermediate temperatures (60 – 90°C) allowing for formation and printing of complex, tall 

structures that remain stable during a heated cure. 

The third task incorporates up to 30 vol% glass fibers into the high temperature epoxy ink 

developed in task two.  Fiber length measurements are conducted throughout the mixing process 



 

7 
 

to confirm minimal breakage during formulation.  Thermal and mechanical properties of four 

formulations – 0, 10, 20, and 30 vol% GF – are compared along with processing considerations. 
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CHAPTER TWO 

SCIENTIFIC BACKGROUND 

 

This chapter provides the technical knowledge required for the work. 

2.1.  Additive Manufacturing Requirements 

All additive manufacturing processes involve the gradual buildup of material layer-by-

layer.  While methods vary between techniques, all allow for the production of a part directly from 

a computer aided drafted (CAD) file to create a near-net shape part [2].  This requires the selective 

placement of material that remains free-standing for the duration of production.  For methods such 

as binder jetting of metals [90] or selective laser sintering (SLS) of metals, polymers, or ceramics 

[91], this is accomplished by coalescing selected regions in a bed of material by sintering or a 

photo-initiated crosslinker.  Extrusion based methods hold the bulk material in a secondary vat 

and selectively place material where needed.  These methods are common, found in fused 

filament fabrication (FFF) [92], fused deposition modelling (FDM) [93], big area additive 

manufacturing (BAAM) [94], fused deposition of ceramics [29], and DIW [27].   

2.1.1.  Viscoelastic fluids 

Not all viscous materials lend themselves to extrusion-based printing.  Work by Duty et al. 

characterized the material property requirements for successful printing.  The first, material 

extrusion, quantifies the shear thinning and pressure requirements for feedstock to flow.  The 

second, bead geometry, stipulates that an extruded bead must maintain shape.  Additionally, the 

material must maintain bead functionality and previously printed layers remain stable when 

additional material increases the height.  Lastly, the printed structure must retain geometric 

functionality [94].  These requirements can be evaluated through rheology. 

Parallel plate rheology incudes an oscillating shear force on a material at some prescribed 

frequency.  This can be used to determine the storage, E’, and loss, E”, modulus as well as the 

viscosity, η, when the resin experiences a shear force as occurs during DIW extrusion.  The 

storage modulus, E’, provides information about the viscoelastic nature of the material.  

Conversely, the loss modulus, E”, describes the energy lost due to friction or heat [95].  

Conducting a stress sweep at a given temperature gives information about the relative stability 
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and flow under pressure.  At low stresses which correspond to the steady-state nature of a 

material before or after printing, the storage modulus must be less than the loss indicating elastic 

solid properties [94].  However, the material must exhibit shear thinning behavior to flow.  Defined 

as the tangent intercept between the initial linear viscoelastic region and subsequent decrease in 

the loss moduli as the stress increases, the shear yield stress, τy, can indicate both flow and 

stability.   

 For thermoplastics, the material is heated to above the melting temperature, reducing τy 

for extrusion.  Upon cooling, the viscosity decreases resulting in a stable structure [45].  However, 

this creates thermal gradients within the part that can lead to warping, cracking, and layer 

deboning [46].  Additionally, printed thermoplastics can have poor interlayer bonding which 

imposes anisotropy.  Work by Abbott et al. found an 80% reduction of strength when measured 

along versus against the bead direction [92].  However, thermosets cure when heated and a 

different process is employed. 

2.1.2.  Direct Ink Write 

Direct ink write printing can be applied for a range of paste-like viscoelastic fluids including 

ceramic slurries [6, 29], gels and biomaterials [33, 34], conductive materials for sensors [96], and 

epoxies [35, 41, 97, 98].  This work will focus on epoxy thermosetting resins.  As a thermoset, 

epoxies require a secondary cure during [99] or after [37] extrusion where the printed part must 

remain stable. 

Rheological Modification - Nanofillers 

Many epoxies are fluid at room temperature, do not experience shear thinning, and require 

rheological modification through a filler material.  Work by Compton et al. determined that high-

aspect ratio fillers, such as fibers, do not produce appropriate shear thinning behavior with an 

epoxy-graphene ink (τy = 70 Pa) unable to hold shape above 2-3 mm in height [36].  Rather, a 

low-aspect ratio functionalized nanofiller, commonly nanoclay [49, 80] and fumed silica [27, 100], 

is utilized.  Hmeidat et al. determined that for 1x102 < τy < 1x103 Pa, room temperature extrusion 

works well and prints maintain structure [37].  The nanoclay acts as a rheological modifier to 

impose shear thinning properties, increase the stability, and decrease the effects of temperature 

on viscosity.  The nanofiller allows the material to extrude from a nozzle at a constant rate under 

an applied pressure and maintain structure until cured. 
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DIW Extrusion 

DIW behaves similar to FFF by extruding a constant stream of material to form the printed 

part layer by layer using a multi-axis print platform as demonstrated in figure 3 [101].  Some 

overlap with the previous layer is required to fully bond the material for a fully dense part.  Wang 

and Shaw determined a critical nozzle height, hc, such that the material retains dimensional 

stability without a squeezing effect as would be seen for h < hc, but the cross-sectional geometry 

is no longer dictated by just the rheological properties and ink wettability (h > hc).  The critical 

height can be defined by 

 

ℎ𝑐 =  
𝑉𝑑

𝑣𝑛𝐷𝑛
        1 

 

where Vd is the volume of extruded ink per unit time, vn is the print head speed, and Dn is the 

nozzle diameter [102]. figure [103] adapted from [104] and [105] 

  The process is highly adaptable and can print a wide range of materials as discussed 

above.  Because crosslinking occurs after extrusion, limited overhangs are achievable, although 

partial curing during extrusion can improve this [99].  Direct ink write additive manufacturing 

provides excellent print control and can be applied to a large range of materials with varying filler 

materials making it attractive for continued development.  

2.2. High Temperature Epoxies 

Thermal stability can be determined by the glass transition or heat deflection temperature 

and is related to the relative motion of the polymer chains.  Some pre-polymeric resins have been 

formulated for high temperature applications.  However, the curing agent and cure profile 

determine the final crosslinking density of the solid epoxy.  As such, the pre-polymer, curing agent, 

relative ratios, cure time, and temperature must all be considered to determine the final properties.   
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Figure 3. Comparison of thermoplastic FFF additive manufacturing and DIW. Refs: [103] adapted from 
[104, 105]. 
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In addition to the shear thinning and bead stability requirements for DIW AM, two additional 

challenges must be considered for a high temperature thermoset system.  Pre-polymers that have 

been formulated for high temperature applications are often bulky molecules with high molecular 

weights that yield high viscosities and many are solid [106-108].  Further, many of these are 

recommended for thin film applications as the cure reaction is highly exothermic [109, 110].  

Scaling up to bulk parts can produce excess heat leading to auto-acceleration where the effects 

compound and can become dangerous.  As such, to print these systems, the initial resin viscosity 

must be reduced and the heat produced during cure must be controlled. 

2.2.1.  Glass Transition and Heat Deflection Temperatures  

As a second order transition, the glass transition temperature is determined by kinetic 

limitations to movement rather than a thermodynamic equilibrium [111].  Rather, the glass 

transition temperature is a measure of the free volume and molecular mobility of a structure [112, 

113].  Free volume is a measure of remaining available space for the polymer chains to occupy 

and can arise from motion of the chain ends, side chains, or main chain itself.  Lower free volume 

corresponds to less possible chain motion as the molecules become locked into place.  

Decreasing the number of end groups, length of side chains, and increasing the steric hindrance 

and the crosslinking density all lower the free volume and therefore increase the glass transition 

temperature [114, 115].  Crosslinking density depends on the curing agent and cure cycle with 

longer cures at higher temperatures increasing the Tg [116, 117]. Below the Tg, molecules are 

frozen leading to a polymer that is macroscopically hard and brittle.  Above the transition point, 

molecules are able to experience rotational and translational motion resulting a rubbery bulk 

material [118].  

While the glass transition temperature considers molecular behavior, the heat deflection 

temperature (HDT) provides a practical measurement [112].  Defined by ASTM D648, the heat 

deflection temperature is the temperature where a sample in 3-point bend geometry distorts a set 

amount under a constant stress.  The two values are similar for unfilled systems, but the HDT 

provides a macroscopic measurement and generally is 15°C lower for unfilled systems [119].  

While both provide upper limits for the usable temperature, the HDT is a short-term test and 

additional work must be conducted to observe long-term behavior [120].  Further, while Tg is a 

material property of the resin, the HDT reflects the impact of reinforcing agents.  While fibers are 
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commonly used [47], Wang et al. demonstrated that at low loading fractions (3 wt%), nanoclays 

can induce a 10.5% improvement in HDT [121].   

While there are many methods to determine the Tg, including thermomechanical analysis 

(TMA) [122] and dynamic mechanical analysis (DMA) [123], measuring the heat capacity from 

differential scanning calorimetry (DSC) [124] provides a direct consideration of the molecular 

behavior.  Both TMA and DMA measure macroscopic changes and generally yield higher Tg 

values [125, 126].  Although single values are reported, the glass transition temperature 

represents a range of temperatures and can vary with the heating rate [95].  As HDT measures 

deflection as a function of temperature, 3-point bend tests can be conducted using either DMA or 

TMA.  While DMA employs larger samples which allows for measurements of as-printed 

properties, TMA provides more accurate load control and thin samples are less likely to 

experience a temperature gradient.  For both of these tests, the heating rate generally ranges 

from 2 – 10°C/min with lower values being reported at slower rates [122-124]. 

Differential Scanning Calorimetry (DSC) 

Heat is either released or adsorbed as a material undergoes a physical transformation. 

This energy transfer is measured by DSC.  Because a material must adsorb energy to increase 

molecular mobility, the glass transition temperature is an endothermic reaction denoted by a 

decrease in the heat capacity at temperature from a DSC curve.  After the transition, the slope 

levels and a new, linear steady-state is reached.  The Tg is measured at the midpoint of the slope 

change [124].   

For thermosets, DSC can also be used to determine the cure behavior.  The cure is an 

exothermic reaction, and the change in enthalpy, ΔH, which describes the heat of cure can be 

determined by the area under the resultant DSC curve.  Unlike the cure onset and peak 

temperatures, ΔH is independent of the heating rate.  The degree of cure, α, at a given time, t, 

can be calculated by 

 

𝛼(𝑡) =  
𝐻(𝑡)

𝐻𝑇
      2  

 

where HT is the total heat released by the system [127].  The rate of reaction, dα/dt, can be 

determined by  
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𝑑𝛼

𝑑𝑡
=  

1

𝐻𝑇
 
𝑑𝐻(𝑡)

𝑑𝑡
.      3 

 

Following this, the maximum rate of reaction occurs at the peak temperature.  At faster heating 

rates, the exothermic peak increases in both magnitude and temperature which correlates to a 

faster cure [127, 128].  As such, lowering the cure rate or temperature results in a slower, more 

controlled cure [129]. 

Thermomechanical Analysis (TMA) 

As materials heat, they expand which is measured by TMA.  Quantified by the coefficient 

of thermal expansion (CTE), the rate increases above the Tg corresponding to the higher chain 

mobility [130].  Tests are conducted on 5 mm cubes experiencing a constant load [131].  The 

coefficient of thermal expansion can be calculated as  

 

𝐶𝑇𝐸 =  
𝛥𝐿

𝐿 𝛥𝑇
      4 

 

where L is the length being measured and T is the temperature [132].  When using the expansion 

probe, the length is the z-height.  From TMA, Tg can be measured at the tangent intercept of the 

two slopes denoting the macroscopic expansion at a constant heating rate [95].    

Also tested at a constant load, HDT experimentation utilizes a 3-point bend flexure 

geometry.  The force is calculated for an individual sample to experience a constant stress, S, 

which is generally 0.455 or 1.82 MPa although other values are allowed [133].  The corresponding 

force, F, is determined through  

 

𝐹 =  
2𝑆𝑏𝑑2

3𝐿
        5 

 

where b, d, and L are the width, thickness, and gauge length respectively.  Deformation, D, at 

0.2% strain, ε, given in mm/m, follows 

 

𝐷 =  
𝜀𝐿2

6𝑑
.      6 
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The temperature at which a sample reaches this deformation is the heat deflection temperature.  

The 0.2% strain is standard; however, it is selected arbitrarily [134]. 

Dynamic Mechanical Analysis (DMA) 

DMA probes a sample with an oscillating force at a set frequency to measure material 

recovery.  This recovery can be divided into two parts.  The first, the storage moduli, E’, gives the 

elastic properties describing the recoverable energy after deformation.  The damping properties 

are described by the loss modulus, E’’, which describes the energy lost due to friction and internal 

movement [95].  The ratio of the two is given by tan(δ) such that  

 

𝑡𝑎𝑛(𝛿) = 𝐸′/𝐸".       7 

 

 DMA is recommended for glass transition temperature measurements of continuous-fiber 

polymer matrix composites (PMC) [123].  The Tg can vary up to 25°C on the same test when 

measured from the storage moduli, loss moduli, or tan(δ) [95].  From the storage modulus, Tg can 

be determined from the intersection of two tangential lines below and above this value.  Above 

Tg, more chain motion occurs increasing the amount of energy lost to heat.  As such, both the 

onset and maximum temperatures from the loss modulus are used to mark the transition.  

However, Gupta et al. found a 20°C difference between the two methods [125].  Comparing the 

storage and loss moduli in tan(δ) shows the Tg as the maximum value of the resultant peak.  

Although this is the least ambiguous of the three methods, Paroli et al. found a 35% increase in 

Tg from tan(δ) DMA as compared to DSC, TMA, and E” from DMA [126].  Disagreement between 

E” measurements have led to only E’ and tan(δ) approximations being incorporated into ASTM 

standards [123].  Table 1 summarizes characterization methods for both cured properties and 

uncured resin (see chapters 2.2.3 and 2.2.4). 

2.2.2. Glass Transition Temperature and Viscosity 

For polymers, movement along the molecular chain determines the Tg which is related to 

the relative size and bulkiness of the chain.  Common chain motion methods include bending, 

stretching, rocking, rotating, twisting, and wagging of the individual atoms as depicted in figure 4.  

More atoms along the monomer backbone, tightly bonded molecules, and bulky groups all  
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Table 1. Summary of characterization method and properties measured.  Rheology is conducted on 
uncured samples, TMA and DMA measure cured properties, and DSC can be performed on either to obtain 
different results. 
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Figure 4. Selected methods of polymer chain motion.  Long, bulky chains require more energy to move 
which correspond to increased glass transition temperatures [136]. 
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increase the steric hindrance.  In turn, this limits chain motion and the Tg increases [135].  While 

limiting motion increases the glass transition temperature, this also impacts room temperature 

properties.  For uncured systems, bulky, high molecular weight pre-polymers increase the room 

temperature viscosity; once cured, they decrease the materials toughness leading to brittle 

materials [43]. [136] 

The glass transition temperature of thermoset resin increases after the cure corresponding 

to the crosslinking density [115].  Many epoxies resins have initial Tg values that are below room 

temperature which results in a liquid pre-polymer.  However, for high temperature epoxies, it is 

common for the initial Tg to be higher, leading to viscous or solid pre-polymers [107, 109].   

In 1950, Flory and Fox developed a relationship between the number-average molecular 

weight (Mn) and Tg such that  

 

 𝑇𝑔 =  𝑇𝑔,∞ −
𝐾

𝑀𝑛
      8 

 

where K is a constant related to the total free volume and 𝑇𝑔,∞ is the maximum theoretical glass 

transition temperature [111].  Because polymer chains vary in length, the molecular weight also 

varies following a Gaussian bell distribution.  While several averaging methods exist, number and 

weight average are the most common. Using a generic variable, X, which can be the molecular 

weight, fiber length, or another factor which varies in length, the number average is defined as 

 

𝑋𝑁 =  
∑ 𝑁𝑖𝑋𝑖

∑ 𝑁𝑖
      9 

 

and the weight average follows 

 

𝑋𝑊 =  
∑ 𝑊𝑖𝑋𝑖

∑ 𝑊𝑖
      10 

 

where NI and Wi are the number or weight of things X at length I [73].  Work by Fox et al. found 

that the short polymer chains have a larger impact on final properties, and the number-average 

calculations more closely agree (MN = ± 5°C, MW = ± 30°C) with measured values [111].  
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Molecules with long polymeric chains have high molecular weights and require more 

energy to move which increases the Tg.  As observed by Chan et al., for some high temperature 

systems, this can increase the pre-polymeric Tg such that uncured resins are solid at ambient 

temperatures [137].  Additionally, when there is less free volume in the system, there is less space 

to move in which also increases the Tg. 

However, free volume and viscosity are also directly related.  Large molecules result in 

steric hindrance and long chains limit motion.  To achieve a high Tg, many pre-polymers have 

high degrees of steric hindrance before crosslinking occurs.  As such, to achieve high temperature 

properties, a high viscosity resin will have to be used. 

Figure 5 shows three resins used in this study along with their epoxide equivalent weight 

(EEW), room temperature viscosity, and cured Tg for a resin-4,4’-diaminodiphenylsulfone (DDS) 

system.  The EEW will be discussed in chapter 2.2.4 and is included for comparison.  In figure 

5.a, a common Bisphenol A diglycidyl ether (DGEBPA) resin, Epon 826 [138], is shown.  This 

system is liquid at room temperature and shows success as a printable base ink for DIW 

application [35, 37, 49].  A high-temperature, naphthalene-type, liquid resin, Epiclon HP-4032SS 

[109] is depicted in figure 5.b.  Lastly, figure 5.c depicts Epiclon HP-7250 [109], a high-

temperature “semi-solid” modified multi-functional resin.  With the lowest viscosity (and lowest 

Tg), Epon 826 is a long chain with two functional epoxide groups.  Although longer than HP-

4032SS, there is a higher degree of freedom leading to a larger free volume.  As a short chain 

with two phenol groups and two epoxide functional groups, HP-4032SS reaches a high 

crosslinking density to achieve its thermal properties.  HP-7250 has ≥ 5 epoxide reaction sites 

and the same number of phenol groups.  The phenol groups add bulkiness reducing the free 

volume and increasing the viscosity while the high number of reaction sites allow for an intertwined 

crosslinking structure.   

This study also considers a solid epoxy, Epiclon HP-6000.  However, the structure is 

proprietary and therefore not included.  The Tg values are reported after curing with DDS as 

provided by the manufacture and other work.  DDS will be discussed in chapter 2.2.5 and is 

known to produce high thermal properties, making it popular for aerospace applications [43].  

However, DDS increases the uncured viscosity of a resin and is unable to be incorporated for 

DIW applications.  As such, the measured values reported in this work are lower. 

molecular structures figure ref [109, 138-140] 
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Figure 5. Molecular structures of 3 epoxies.  Epon 826 is a common DGEBA 
epoxy, HP-4032SS is a high temperature liquid, while HP-7250 is a semi-solid.  
Note that all Tg values are measured using DDS as the curing agent.  Refs: [109, 
138-140]. 
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2.2.3. Crosslinking and Evolved Heat 

The epoxide equivalent weight (EEW) tells the molecular weight of the epoxy resin per the 

number of reactive sites. The lower the EEW, the more reactions occur simultaneously leading to 

more heat produced.  This is described by the heat of reaction, ΔH, and can be measured by DSC 

which chapter 2.2.2 outlined.  

Excessive heat can lead to auto-acceleration as the heat from previous reactions initiate 

further reactions.  Although a reaction rate is constant at a given temperature, the exothermic 

cure reaction coupled with a decrease in the surface area-to-volume ratio traps heat within the 

bulk material.  In a phenomena known as a runaway reaction, this is difficult to stop until all 

material has been consumed.  In 2007, improper scaling produced a runaway reaction at T2 

Laboratories in Florida which destroyed the plant and killed four people [141].   

Generally, the reaction heat from high temperature epoxies is controlled by limiting 

applications to thin films where the excess heat can safely dissipate [142].  However, lowering 

the rate of cure (and heat production) by decreasing the temperature prevents thermal build up 

and can allow the generated heat to dissipate safely.  For AM, this is provided via a low-

temperature pre-cure step which also allows the printed structure to maintain shape as the 

viscosity decreases with temperature.   

The EEW can determine the amount of curing agent required.  For a reaction to occur, an 

active hydrogen atom of the curing agent reacts with the epoxide group of the resin.  Binks et al. 

determined that an excess of curing agent shifts the reaction onset to lower temperatures [143].  

The reverse is also true; a lower content of curing agent shifts the crosslinking temperature higher.  

However, at low concentrations, the reaction is unable to fully occur and excess epoxide groups 

can decrease the Tg by acting as rubbery interstitials [144].  Additionally, Minty et al. found that 

improper curing agent to epoxy ratios can result in decreases fiber bonding decreasing strengths 

of PMC’s [145]. 

Similar to the epoxide equivalent weight, curing agents also have an equivalent weight.  

For this, the molecular weight of the structure is divided by the number of active reaction initiation 

sites which are exposed and available to readily react.  A 1:1 stoichiometric ratio of curing agent 

can be calculated by 
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𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑐𝑢𝑟𝑖𝑛𝑔 𝑎𝑔𝑒𝑛𝑡

𝑒𝑝𝑜𝑥𝑖𝑑𝑒 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑤𝑒𝑖𝑔ℎ𝑡
∗ 100 =   𝑚𝑎𝑠𝑠 𝑜𝑓 𝑐𝑢𝑟𝑖𝑛𝑔 𝑎𝑔𝑒𝑛𝑡 (𝑝𝑝ℎ)    11 

 

to determine the amount of curing agent needed in parts per hundred (pph) of epoxy. Excess 

curing agent can lead to a quicker reaction and increase the possibility of auto-acceleration. 

2.2.4.  Impact of Curing Agents 

For DIW, inks can be formulated prior to extrusion [6, 37] or mixed at deposition [41, 146].  

Based on the type of curing agent, crosslinking can be activated chemically when combined with 

the resin [41], at elevated temperatures [37], or with an UV light [147] among other methods.   

Generally producing lower thermal properties than developed with a thermal cure [148], 

room temperature curing can reduce energy costs from curing.  Further, Rios et al. has 

determined that, for small scale applications or with thin walls, the crosslinking of previous layers 

can provide additional stability for further material similar to thermoplastic printing, but with 

reduced warpage and improved inter-laminar strength [146].  However, the cure reaction remains 

exothermic where Romberg et al. has observed that for large scale applications, heat from 

previously printed material can soften subsequent layers, resulting in bead instability and print 

failure [41]. 

Heat and UV-activated curing agents allow for longer working times.  Because of the latent 

systems, inks can be formulated in advance.  The degree of latency varies with the system, but 

Rahmathullah determined that formulated inks at room temperature can have a pot life of over 2 

months [149].  Heat activated systems can produce a range of crosslinking densities producing 

HDT’s ranging from 30 [55] to 260°C [47] for a single resin (Epon 828).  However, because of the 

inverse relationship between temperature and viscosity, heat activated curing agents are more 

prone to failure from the decreased shear yield stress during curing.  Recent work has considered 

a dual UV-heat cure [99, 150].  Inverizzi et al. has found that by partially curing (UV) the system 

during printing, increased print stability was achieved allowing for a 50° print overhang [99].  The 

heated cure then provided additional mechanical and thermal properties. 

 This work considers three heat-activated systems: an ionic liquid, dicyandiamide, and a 

diaminodiphenyl sulfone as depicted in figure 6.  The heat activated system allows for a long 

latency with pot life of several hours at intermediate temperatures.   

Curing agents figure Refs: [151-153] 
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Figure 6.  Three common curing agents. A) 1-Ethyl-3-methylimidazolium dicyanamide (EMIM DCA, 
VS03), B) Dicyandiamide (DICY), C) Diaminodiphenyl sulfone (DDS).  Refs: [151-153]. 
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1-Ethyl-3-methylimidazolium dicyanamide (EMIM DCA, Basionics VS03)  

 Basionics VS03 is an imidazolium-based ionic liquid that has shown success as a latent 

curing agent for printed Epon 826 systems leading to moderate (130 – 155°C) glass transition 

temperatures [35, 37].  It can be used as the primary curing agent or as a catalyst for a less latent 

curing agent such as a dicyandiamide. At low loading fractions (6 pph), Neumeyer et al. observed 

a 17 – 35°C reduction in the curing onset temperature measured by DSC at varying heating rates 

[154].  Work by Rahmathullah et al. has determined that for DGEBA-VS03 systems, there is a pot 

life greater than 60 days and the reaction completes in 20 minutes at 165°C [149].  As such, VS03 

is readily accessible and provides sufficient latency required for pre-mixed printing. 

Dicyandiamide (DICY) 

The second curing agent, the dicyandiamide (DICY), comes as a white powder.  DICY is 

able to be incorporated similar to nanoclay by directly mixing into the epoxy resin [74].  While 

DICY commonly uses an accelerator to lower the required activation energy, crosslinking occurs 

quickly above 175°C [155].  Although more energy is required to initiate a reaction than for an 

imidazole dicyanamide, Hu et al. found that crosslinking progressed when lowering the cure 

temperature to 110°C, but the time to full cure doubled [156].  Work by Thakkar et al. showed that 

although DICY is not an aromatic amine, it produces similar properties by acting as a catalytic 

curing agent.  The thermal stability is imparted by using all four nitrogen containing functional 

groups to cure resulting in a highly crosslinked structure [47].   

Diaminodiphenyl sulfone (DDS)  

Diaminodiphenyl sulfone (DDS) also comes as a white powder.  Known to produce high 

crosslinking densities, epoxies from this system can lead to glass transition temperatures 100°C 

higher than found using an imidazole curing agent [47].  However, DDS has a low solubility and 

a melting temperature of 175°C [153].  This leads to challenges with dispersion and is commonly 

found dissolved in solvents [157] or heated and mixed using a rotary evaporator [43, 109].  The 

patent filed by Blakhaman showed that when incorporated with the liquid prepolymer CY179, the 

resultant formulation became solid with a Tg of 46°C and a melting point at 76°C prior to curing 

[158].  As such, despite the excellent properties achievable with DDS, solid resins are unable to 

be processed via DIW at this time and will not be considered for this work. 
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2.3. Cure Progression 

Because the epoxy systems incorporate a heat-activated crosslinker, care must be taken 

to prevent curing during processing.  Latent curing agents will cure at lower temperatures than 

optimizal, but at reduced rates [117].  The minimum amount of energy required for molecules to 

interact and react is described by the activation energy.  At each temperature, the activation 

energy can be used to determine a rate constant [159].   

A time-temperature-transformation (TTT) diagram is shown in figure 7 and describes expected 

resultant properties when varying the two variables for an isothermal cure [117].  The y-axis shows 

three Tg values as reference points.  The first, Tg,o, is the initial value for the uncured system.  

Below this point, there is limited chain motion, reaction sites do not interact, and crosslinking is 

unable to occur.  The second, gelTg, is the transition temperature after long-range crosslinking has 

developed.  The Tg of the cured system will fall between this and Tg,∞ which is the maximum 

achievable transition temperature. [160] 

2.3.1.  Gelation 

Charlesby determined that a thermoset gels once when each monomer has cross-linked, 

on average, one time leading to an insoluble network producing long range elastic behavior [161].  

While an ASTM standard does exist to determine the gel time [162], it remains arbitrary and based 

on visual observation.  As such, other work has been done to determine gelation by rheometry 

[117, 163-166].  Winter et al. proposes that the gel point is reached when infinite viscosity is 

observed [166] while Hinrickhs et al. defines it at the point where the storage and loss modulus 

are equal and tan(δ) = 1.0 [163].  Regardless of the measurement technique, gelation marks the 

onset on solid behavior.  At sufficient temperatures, molecules are able to move freely and 

gelation occurs rapidly.  However, if a fiber-filled resin gels too quickly, the fiber wetting properties 

and resultant fiber adhesion, can be worsened [74].  

2.3.2.  Vitrification 

Vitrification occurs when the glass transition temperature of a system increases to equal 

the cure temperature [117].  Provided that the cure temperature is below that of the maximum 

achievable glass transition temperature, the system will continue to crosslinking increasing the 

thermal properties past this point when provided sufficient energy.  At vitrification, the thermoset  
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Figure 7. Time-temperature-transformation (TTT) isotherm cure diagram for a generic 
thermosetting polymer [160]. 
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system remains malleable and processable at higher temperatures, but rigid at lower 

temperatures [117]. 

As depicted in figure 7, the vitrification curve is S-shaped.  If the cure temperature is below 

gelTg, gelation and vitrification occur simultaneously forming a sol-gel glass [117, 165].  At higher 

cure temperatures, the two occur separately with vitrification increasing long range order from the 

sol-gel rubber state to a glassy state.  Crosslinking continues until insufficient thermal energy is 

provided, the reactions sites are unable to interact, and the reaction stops prematurely. However, 

by increasing the cure temperature, the reaction can continue.  At cure temperatures above Tg,∞, 

the cure is able to fully progress and vitrification does not occur [167].   

When vitrification occurs, it acts as an intermediate to the full cure and largely impacts the 

reaction rate.  Before vitrification, the reaction rate follows chemical-controlled kinetics.  After, the 

reaction becomes diffusion-controlled and slows [156, 160].   

2.3.3.  Maximum Glass Transition Temperature 

Rarely is the maximum glass transition temperature achievable.  Enns et al. found that 

competing reactions, steric hindrance, and insufficient time can prematurely stop crosslinking 

[167].  While no one cure path is “best”, the process to develop an optimal cycle is time consuming 

and expensive [163].  While high temperature, faster cures without intermediate steps can be 

more straightforward, these can also shock the system where the outer surface cures before the 

inside structure is heated.  This outside-in cure progression can lead to high internal stresses 

from thermal expansion and cure shrinkage [117].   

The phenomena of longer cures producing higher glass transition temperatures and 

mechanical properties is well documented [116, 160, 167, 168].  Wisanrakkit et al. found that after 

vitrification an additional 18 hours at temperature lead to a 30-50°C increase in Tg which they 

attribute to the diffusion-controlled nature of the reaction and steric hindrance [160].   This 

relationship was expanded by Enns and Gillam to state that  

 

𝑑𝛼

𝑑𝑡
= 𝐴 𝑒𝑥𝑝 (

−𝐸𝐴

𝑅𝑇
) 𝑓(𝛼)𝑓(𝜂𝐿)     12 
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where α is the extent of the reaction, EA is the activation energy required to initiate the reaction, 

and R is the universal gas constant.  The function f(α) provides information as to the reaction 

kinetics and extent of conversion while local viscosity, and diffusion kinetics, are described by 

f(ηL) [117, 167].  The activation energy can be determined through DSC thermograms following 

Kissinger’s methods [127, 128, 169]. 

2.3.4.  Degradation: Char and Devitrification 

When thermosetting systems are exposed to high temperatures for extended periods of 

time, they can undergo char or devitrification; both of which can mark the lifetime of a thermoset.  

For each resin-curing agent system, this lifespan before degradation varies.  Char formation 

occurs when operated above the glass transition temperature [117].  A high char yield can be an 

indicator of good flame resistance [170].  When used below the transition temperature for 

sufficient time, devitrification can break crosslinks and the Tg is subsequently decreased.  For 

high temperature systems, these reactions can interfere with the maximum achievable Tg. Work 

by Chan et al. using trifunctional epoxy-DDS system found that while the calculated maximum Tg 

was 352°C, the measured results fell at 324°C due to this competing reaction [137].  Using 

degradation rates, the initial Tg and HDT, Stutz et al. determined the relationship between lifetime 

and service temperature to avoid thermal degradation.  From this work, for the selected DGBA 

epoxy system with an initial Tg of 200°C to maintain a 20-year lifespan, 135°C is the maximum 

usable temperature [171].  While these values vary between systems and applications, thermal 

degradation will diminish cured properties provided sufficient time. 

2.3.5.  Phase Separation 

If applicable, phase separation occurs before gelation.  When a secondary material – either a 

filler or non-primary epoxy – is added to the matrix, the two can begin crosslinking at different 

temperatures or variations in the thermal properties can force material out of the matrix leading 

to a heterogeneous final structure [117].  This correlates to a non-uniform increase in viscosity 

leading to intermediate plateaus during the cure as observed via rheology [163].  Poor miscibility 

can result in multiple glass transition points and dissimilar properties across a cured part [119]. 
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2.4. Processing Requirements 

2.4.1.  Resin Deposition  

Two approaches have been explored for material extrusion printing of nominally solid 

materials. In the first approach, the solid material is dissolved or suspended in a solvent or carrier 

fluid. This approach enables deposition at room temperature and encompasses robocasting of 

ceramic and metal particle suspensions [30] and solvent casting of polymer resins [74].  However, 

with this approach, the solvent or carrier fluid must evaporate after deposition, which limits 

applications to thin walls [172] can lead to shrinkage and cracking due to solvent outgassing [173]. 

In addition, solvents used for polymer resins can present health and safety hazards [174].  

A more widely used alternative, particularly for polymer-based systems, is melt extrusion 

(figure 3.a). In this process, the print head applies heat to liquefy the feedstock material thereby 

reducing its viscosity and enabling extrusion and deposition. After deposition, the material cools 

and solidifies.  This approach encompasses all of the thermoplastic material extrusion printing 

technologies, including FFF, FDM, and BAAM as discussed in chapter 2.1. This process is 

attractive for its commercial maturity, robustness, and minimal post-processing. However, the 

thermal history in printed parts is complex [41, 98], which can lead to geometric warping, poor 

layer-to-layer bonding, and interlaminar deboning [94, 175].  For thermoplastics, this is achieved 

by heating a material above the melting temperature [45].  However, for thermoplastics, care must 

be taken to reduce the viscosity but not induce cure.  For this work, a warmed extrusion process 

is selected.  Because of the required post-processing cure, issues with interlayer bonding, 

residual stresses, and warping are minimized.   

2.4.2.  Pre-cure 

For DIW of thermally cured inks, an intermediate temperature pre-cure is required for the 

print to maintain structure.  While the formulations can cure at room temperature, this can be on 

the order of weeks as determined by a materials pot life.  Practical time constraints require 

moderate temperatures to initiate crosslinking.  However, the decrease in viscosity can limit build 

heights. 

Work by several authors have found success with a moderate temperature cure around 

100°C for 12 – 24 hours for an DGEBA epoxy system [36, 37, 80, 176].  The temperature at 
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minimum viscosity and time required to achieve vitrification will vary based on the system.  Kuman 

et al. noted that slow cures can be mechanically beneficial [177].  During fast cures, the rapid 

release of heat from the cure exotherm can create hot spots which lead to voids.  Mechanically, 

the pre-cure temperature is less important than the extent of crosslinking.  Patel et al. showed 

that, while faster cures presented lower fatigue lives, similar behavior occurred provided the epoxy 

was able to reach a critical gel point prior to a post-cure [75].  As such, the pre-cure does lengthen 

the cure time.   

The pre-cure also improves the safety of the system.  As discussed in chapter 2.2.4, the 

heat produced by crosslinking remains constant regardless of the cure rate.  By lowering the cure 

temperature, the reaction rate decreases.  In turn, the probability of a runaway reaction also 

decreases.  Other methods to minimize the exothermic reaction include adding filler materials to 

reduce the reaction sites and bulk volume [178] and maintaining thin walls for sufficient heat 

egress [35]. 

2.5.  Fibers 

Generally more expensive than the traditional structural materials (e.g. aluminum or steel 

alloys), fiber composites are lightweight which saves energy reducing the overall lifetime costs 

[82].  Although the strength and stiffness are commonly less than traditional materials, the specific 

strength and moduli improve.  The high strength-to-weight ratio makes fiber composites attractive 

in the automotive [179] and aerospace industries [76] as well as for sporting equipment where 

lightweight equipment requires less physical expenditure [73].  Generally made with carbon or 

glass fibers (GF) imbedded into a polymer or ceramic matrix, fiber composites are designed such 

that the matrix provides support and structure for the fibers which give strength.   

Differences in thermal expansion leads to swelling at different rates which can produce 

pores and poor fiber-matrix adhesion.  This is worsened by highly viscous materials [73] or a rapid 

cure [117].  Fiber composites are commonly vacuum sealed to prevent this [180, 181].  However, 

one of the strengths of AM is the lack of mold required.  As such, vacuum sealing a printed part 

would negate the benefits of printing. 
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2.5.1.  Types of Fibers 

Carbon and glass fibers are commonly selected for thermoset composites.  Carbon fibers 

are commonly employed when high performance properties are required.  Currently, work on 

printed fiber-reinforced thermosets predominantly focuses on carbon fiber composites to improve 

mechanical strength [27, 49, 85, 97, 99] of printed components and thermal properties [98, 105].  

In one such example, Wang et al. utilized carbon’s electrical conductivity to produce a flexible, 

printed wearable lithium ion battery [182].  Work by Mishhaevky et al. observed that when using 

carbon fibers in an epoxy matrix, fibers improved the modulus by 57% although this correlated to 

a 44% reduction in strain at failure [183].  This reduction in strain along with their high cost, can 

limit applications.  Alternatively, glass fibers are less expensive and have a higher strain-to-failure 

than carbon. 

 Glass fibers come in two main categories: E-glass and S-glass.  More common, E-glass 

is named for its electrical insulation properties and has good strength, stiffness, and weathering 

properties.  S-glass is more expensive than E-glass, but has a higher moduli and thermal 

resistance.  Glass fibers are unique among fibers because its properties are isotropic [73].  This 

becomes important for AM applications as processing causes high shear stresses which can 

break fibers.  However, when the fibers rub against each other, they can fracture the strands 

causing surface cracks which diminish the strength. Additionally, glass fibers are IR transparent, 

making them attractive for applications such as radomes [184]. 

Fiber properties are compared in table 2.  However, processing and thermal history impact 

the properties.  The values included in the table are not all-inclusive. [73, 185-189] 

2.5.2.  Fiber-Matrix Adhesion 

The fiber-matrix adhesion determines the effectiveness of a fiber to strengthen a 

composite.  Stronger interfacial bond strengths allow for higher load transference from the matrix 

to fiber which determines the strength of the composite [73].  As such, significant work has been 

done to improve fiber-matrix bonding by modifying the fiber surface [190, 191], the matrix content 

[192], and examining the degree of cure [168, 193].  It has been shown that for matrix epoxies 

with high viscosities, there can be reduced fiber-matrix adhesion [74].  This leads to voids that 

become more common with increasing fiber content [73, 194].  With AM, voids are more probable 

than other manufacturing methods with material being placed layer-by-layer.  Figure 8 depicts  
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Table 2. Selected property comparison of carbon, E-glass, and S-glass. Refs: [73, 185-189]. 
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Figure 8. Effect of printing on fibers. A) pores caused from air bubbles during printing and B) highly oriented 

fibers in the print direction [80].  

 



 

34 
 

both voids formed during printing of an epoxy-carbon fiber composite (A) and fiber orientation and 

bonding (B). [80] 

2.5.3.  Fiber Length and Orientation 

Although long fibers yield superior mechanical properties compared to short fibers, 

processing requirements (e.g. deposition height, small corner radii, and nozzle clogging) prevent 

them from being readily usable in AM applications [80].  By following a mixing method to disperse 

fibers, the fiber interactions lead to fibers breakage.  While a higher volume of shorter fibers can 

be added, more load can be transferred to fibers longer than a critical length, producing greater 

property improvements [49].  The critical length, depicted in figure 9, is determined by the fiber 

strength, diameter, and fiber-matrix interface and describes the transfer of load from the matrix to 

the fibers.  While a higher volume of short fibers can increase the modulus, strength improvements 

only occur when the applied load is able to transfer from the matrix to the fibers.  The minimum 

length, lc, that load transference occurs can be calculated by [195, 196] 

 

𝑙𝑐 =  
𝜎𝑓𝑑

2𝜏
      13 

 

where σf is the fiber strength, d is the fiber diameter, and τ is the interfacial shear strength between 

the fiber and matrix.  This can be approximated by assuming that the interfacial shear strength is 

equal to the shear strength of the matrix following a von Mises yield criterion such that 

 

𝜏 =  
𝜎𝑚

√3
       14   

 

and  

 

𝑙𝑐 =  
𝜎𝑓𝑑√3

2𝜎𝑚
      15 

 

where σm is the matrix strength.  Because AM orients material during printing which can lead to 

variations in the matrix yield strength, Pierson et al. averaged the 0 and 90° print direction 

strengths to simulate isotropy [49].   For fibers shorter than the critical length, less load 
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transference is achieved and the strength decreases.  Work by Ohsawa et al. found that for an 

epoxy – E-glass composite, the shear stress between the matrix and fiber is inversely related to 

temperature, which increases the critical fiber length as the temperature increases [197].  This 

was credited to a decrease in the matrix shear strength at elevated temperatures and a relaxation 

of thermal stresses which held fibers at low temperatures. [73] 

2.5.4.  Printed Fibers 

The majority of work done on printed thermoset-fiber systems has studied carbon fibers 

[27, 49, 80, 85, 198].  While carbon fibers do present superior strengths and moduli than glass 

fibers, they are anisotropic and brittle in the off-axis direction making them fragile prior to being 

included in a matrix.  Using a similar resin and mixing schedule followed in this work, Pierson et 

al. measured a 95% reduction in carbon fiber length after incorporation into epoxy [49].  By using 

glass fibers, less breakage during processing is expected as the fibers can adsorb more impact 

before fracture.  However, even if the fibers do not fracture during mixing, the fiber impact can still 

cause surface defects which decrease properties [73, 199].  Because glass fibers maintain their 

initial length, shorter fibers must be used than previously determined.  With carbon fiber, chopped 

tape can be employed with the mixing time controlling the length distribution.  For glass fibers, 

milled fibers are sized by bulk density leading to variation in fiber length distributed around some 

average.  As such, some fibers are shorter than the critical length.  

Unlike injection molding epoxy-fiber composites, AM requires a constant flow rate for 

longer periods of time.  Agglomeration of the fibers in the extrusion nozzle can be detrimental and 

prematurely terminate flow [94, 200].  Recent work by Nawafleh and Celik employed a vibrational 

extrusion system to reduce fiber clogging during extrusion which allowed for a 46 vol% carbon 

fiber-epoxy ink to extrude through a 0.84 mm nozzle.  Despite using short (50 μm) fibers, they 

achieved 70% of the calculated strength for long fibers which they credited to the highly aligned 

fibers reaching a percolation threshold [80].   

Fibers must bend when exiting the nozzle to become a printed road as shown in figure 10.  

This limits the fiber lengths that are able to be processed, decreasing the available property space.  

Nawafleh and Celik note that for fibers with high aspect ratios, fiber agglomeration and nozzle 

clogging become more prevalent [80].  Although short fibers yield reduced strengths when 

compared to continuous, they provide favorable processing conditions for AM. [35] 
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Figure 9. Load transference and fiber length.  The 
critical fiber length, when applied force is primarily 
carried by the fibers, is determined by the fiber 
strength, diameter, and fiber-matrix interface [73]. 
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During printing, Takinalp et al. measured a 91.5% alignment of short fibers in the print 

direction [85].  Thermoplastic work by Es-Said et al. found that mechanical strengths along the 

printed path were 55% higher than when tested at an 90° angle which they believe to be the result 

of directional processing and poor interlayer bonding [201].  Although this occurs less in thermoset 

AM due to stronger interlayer bonding, fibers impose directionality that must be considered [85, 

202].  Recent work by Hmeidat et al. [97] quantified the mechanical strengths correlating with fiber 

orientation through an anisotropy factor following  

 

𝜓 =
𝑀0° 

𝑀90°
      16 

 

which is the ratio of properties, M, in the two directions.  This work determined that both smaller 

nozzle diameters and faster print translation rates induce higher degrees of anisotropy.  Knowing 

the anisotropy relationship allows for customized parts that take advantage of the differing 

properties [203, 204]. 

Some success has been accomplished printing with continuous fibers.  Work by Li et al. 

(thermoplastics) [205] and Hao et al. (thermosets) [198] have both successfully printed with 

continuous fibers.  However, continuous fibers are unable to execute sharp corners without 

breaking, limiting the design freedom additive manufacturing is known for, must extrude slowly (3 

mm/s by Hao et al. [198] as compared to 30 mm/s for short fibers by Hmeidat et al. [37]), and are 

less robust that short fiber systems.  An industrial printer was developed by Markforged which 

allows for extrusion of carbon fibers, fiberglass, and Kevlar [206].  To maintain design freedom 

and reduce complexity, short fibers are considered in this work.   

2.6.  Fiber Composite Models 

2.6.1.  Mechanical models 

There are several models that can describe the fracture behavior of these systems.  The 

first two assume continuous, unidirectional fibers which leads to an equal strain approximation 

when force is applied along the fiber direction and equal stress when the load pulls transverse to 

the fibers [73].  Following an equal strain assumption, the Voigt model, more commonly referred 

to as the rule of mixtures (ROM), provides the upper limit following 
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Figure 10.  Fibers becoming aligned during material extrusion [35]. 
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�̅�𝑈 =  𝑉𝑓𝑀𝑓 + (1 −  𝑉𝑓)𝑀𝑚     17 

where M denotes the modulus and V is the volume fraction.  The subscripts f and m denote the 

fiber or matrix properties respectively while the bar signifies a composite property.  The subscript 

U indicates that ROM calculates the upper limit.  The lower limit, �̅�𝐿, is given by 

 

1

�̅�𝐿
= [

𝑉𝑓

𝑀𝑓
+

(1−𝑉𝑓)

𝑀𝑚
]       18 

 

following the same nomenclature.  However, these models assume continuous fibers which can 

limit the applications.  

The Halpin-Tsai equations are a common short-fiber model which can be applied to a 

generic property, P, that applied to the bulk and shear moduli as well as Poisson’s ratio [207].  

Here, the composite properties can be calculated by  

 

�̅�

𝑃𝑚
=   

1+ 𝜉𝜂𝑉𝑓

1− 𝜂𝑉𝑓
.      19 

 

where 

 

𝜂 =  
(𝑃𝑓 𝑃𝑚) − 1⁄

(𝑃𝑓 𝑃𝑚) + 𝜉⁄
       20 

 

and 𝜉 is a constant related to the geometry of the filler.  While 𝜉 can be determined experimentally, 

it is related to the shape factor.  Work has been done to model these values which vary based on 

the modulus being examined and the loading direction as cataloged by Halpin et al. [207].  

However, when determining the moduli, 

 

𝜉𝐸𝑥𝑥
= 2(𝑎 𝑏⁄ ) .     21 
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When the fibers are aligned in the x-direction (tested axially), a is the fiber length and b is the fiber 

diameter.  However, when fibers are aligned in the y- or z-direction, both a and b are the fiber 

diameter and 𝜉 = 2.  Halpin-Tsai assumes that all fibers are oriented [207]. 

Additive manufacturing does not allow for parts to be vacuum sealed during curing to 

prevent pores.  Further, because AM builds a part layer-by-layer, voids can be created from 

insufficient flow during extrusion [67, 92] although this is more common in thermoplastic 

applications [49].  Voids and pores reduce mechanical properties.  Considering the Halpin-Tsai 

model, a shape factor of 0 is assigned to pores.  However, this does not account for shape, 

distribution, or the type of deformation occurring [207].  Rather, an approximation of the reduction 

in modulus from pores has been developed by Boccaccini et al. such that [208] 

 

𝐸𝑚,𝑒𝑓𝑓 =  𝐸𝑚 (1 − 𝑉𝑝

2

3 )1.21 𝑠     22 

 

where the effective matrix modulus, Em, eff, is a factor of the initial matrix modulus, Em, the volume 

of pores, Vp, and a scaling factor, s, which is defined by 

 

𝑠 = [
𝑧

𝑥
]1/3√1 + ([

𝑧

𝑥
]−2 − 1) 𝑐𝑜𝑠2𝛼𝑝           23 

 

Where z/x gives the axial ratio of pores and cos2αp describes the pore orientation.  For spherical, 

randomly aligned pores, z/x = 1 and cos2αp = 0.33 respectively.  Note that this relationship has 

been developed with Vp = 0.75 as the upper limit.  

2.6.2.  Testing Methods 

 Tensile testing of brittle materials is difficult due to machining challenges and stress 

concentrations leading to premature failure [209, 210].  As such, all mechanical tests are 

conducted using a 3-point bend geometry.  However, surface defects and voids from insufficient 

flow during printing or post-processing are more apparent for flexure testing as they act as stress 

concentration points.  Work by Swaminathan et al. observed a 38% increase in modulus after 

polishing samples which could then be improved an additional 25% by continuing to machine the 

top and bottom surface [211].  Similar work by Brenbaum et al. determined that surface defects 
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can decrease the strength by 50% by acting as stress concentrations and fracture initiation points 

[209].  Because printing imposes a rough upper surface, proper machining is critical to observe 

material properties.  When compared to traditional machining, additive manufacturing creates 

near-net parts reducing the amount of post-processing required and material waste produced.  

Flexure testing generally yields higher strength and moduli values than tensile.  Bullock 

observed a 35 – 50% increase in strength which was accounted for by the non-uniform stress 

distribution of the sample experiencing both compressive and tensile forces [212].  Upon 

application of a load, the top surface experiences a compressive force while the bottom 

experiences tensile.  Because the free volume decreases under compression loading, the 

material is able to support more load than in tension [210].  As such, failure occurs along the 

bottom surface [213].  Shear effects are possible from this configuration.  However, this can be 

minimized by maintaining a 15:1 span to depth ratio [211]. 

2.6.3.  Thermal Models 

Although fibers can interfere with crosslinking and modify the crosslinking density, this 

effect is minimal, and thermal phase changes and transitions are not impacted by the fiber loading 

content [214].  However, fibers can improve the moduli and strength of a composite at elevated 

temperatures.  Because the heat deflection temperature is related to the modulus, the presence 

of fibers can increase thermal dimensional stability.  Work by Zhang et al. observed a 20°C raise 

in HDT with the addition of basalt fibers regardless of the loading fraction [215].   

  As the temperature increases, the critical fiber length does as well.  Ohsawa et al. 

observed a linear decrease in the shear strength at the fiber-matrix interface as temperature 

increased [197].  Although fibers continue to strengthen the matrix at elevated temperatures, they 

do so with diminishing returns until the glass transition temperature where the increased matrix 

mobility lessens the impact of the fibers.   
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CHAPTER THREE 

HIGH TEMPERATURE EPOXY SELECTION 

 

This section evaluates six high temperature epoxies for printing requirements.  This work is not 

to be published. 

3.1.  Abstract 

A printable, high temperature epoxy is desirable for improved design freedom in 

aerospace, automotive, and autoclaving mold applications [2, 4, 77, 179].  However, the definition 

for “high temperature” varies and many epoxies that achieve a glass transition temperature above 

200°C are solid.  Five resins were selected and evaluated for their thermal properties and 

printability.  Although the curing agent plays a large role, only one was considered for simplicity.  

Of the five, only Epiclon HP-7250 from DIC yielded a Tg > 200°C although with an unfilled room 

temperature viscosity of 100,000 mPa.s, the resin remains too thick to extrude.   Additional 

modifications will be required for a printable material. 

3.2. Materials and Methodology 

3.2.1.  Materials 

Five epoxy resins were used in this study: Duralco 4460 (4460, Contronics Corp., 

Brooklyn, NY), EP17HT (Master Bond, Hackensack, NJ), and Epiclon HP-6000, HP-4032SS, and 

HP-7250 (DIC Corporation, Japan).  These resins were selected for their thermal properties, 

viscosities, and availability.  Other resins were considered and can be found in appendix A.  1-

Ethyl-3-methlimidazolium dicyanamide (EMIM DCA, Basionics VS03, Sigma-Aldrich, Inc. St. 

Louis, MO) was used in stoichiometric amounts based on the resin EEW as calculated using eq. 

11 for the Epiclon resins.  4460 included both resin and hardener and EP17HT was a one-part 

system.  Garamite 7035 nanoclay (BYK-Chemie GmbH, Wesel, Germany) was used as the only 

rheological modifier. 

Relevant information, including the cure cycle, viscosity, and Tg, are included in table 3.  

Duralco 4460 was promoted as a “high temperature, low viscosity epoxy” with a working 

temperature up to 600°F (315°C), primarily for coating applications that require chemical, 



 

43 
 

electrical, and moisture resistance.   At $600/30 cc of resin, Master Bond EP17HT was the most 

expensive resin tested and claimed a Tg of 220 – 225°C and a working temperature of 340°C.  It 

was refrigerated prior to use to prevent curing and presented a high viscosity at room temperature.  

A solid, liquid, and semi-solid resin were chosen from DIC’s Epiclon line.  HP-6000 came as solid 

pellets that were approximately 3 mm in diameter with 80°C as the softening point.  Of the solid 

epoxies considered, HP-6000 presented the lowest softening temperature.  Had promise been 

shown, other solid resins would have been explored.  With a RT viscosity of 1,000 mPa.s, HP-

4032SS the lowest viscosity of a resin that met the target temperature.  Despite this, the uncured 

material would separate at ambient temperature (~23°C) which could be reversed via heating.  As 

a semi-solid with a high Tg, HP-7250 was chosen to bridge the gap between low temperature 

liquid resin and high temperature viscous resins.  Note that curing agent varies across the 

systems.  Molecular structures of HP-4032SS and HP-7250 were shown in figure 5.  [107, 109, 110, 216-219] 

3.2.2.  Formulation 

All inks were mixed using a centrifugal planetary mixer (Speedmixer, FlackTek, Inc., 

Landrum, SC).  While the procedure varied due to different requirements from the resins (see 

table 4 for specifics), the general outline is as follows.  The resin and curing agent were mixed for 

1 – 2 minutes.  Nanoclay was incrementally added until the ink maintained stiff peaks off the edge 

of a spatula.  Between each mixing step, the walls of the mixing container were scraped with a 

spatula.  The final formulation was remixed under 0.1 atm vacuum.  

Additional steps were required for solid HP-6000 and viscous HP-4032SS and HP-7250.  

HP-6000 epoxy beads were first dissolved in 150 pph acetone (Fisher Scientific, Waltham, MA) 

using a magnetic stir bar (Fisher Scientific, Waltham, MA) at 400 - 500 rpm until fully dissolved.  

Clay and curing agent were then added to the solution as before.  These inks were not mixed 

under vacuum, but were left in a desiccator (McMaster-Carr, Elmhurst, IL) overnight to remove 

excess gas and solvent.   

Both HP-7250 and HP-4032SS were heated to 80°C in an oven prior to mixing.  The 

decreased viscosity made clay incorporation possible. 
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Table 3. Epoxies considered in this study. Refs: [107, 109, 110, 216 – 219]. 
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Table 4. Mixing parameters of all blends.  Viscosity measurements come from technical data 
sheets.  Clay was added in parts based on the number of sets listed in row 7 (ie, 12 pph clay in 
3 sets = 4 pph clay added at a time) 
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3.2.3.  Evaluation 

Inks were evaluated based on the glass transition temperature, cure behavior, and 

processing viability.  Differential scanning calorimetry (DSC, TA Instruments Q20, New Castle, 

DE) was used to determine the glass transition temperature and cure behavior prior to the addition 

of nanoclay.  Tests were run on 10 ± 2 mg samples in aluminum pans at a heating rate of 10°C/min 

from ~20°C to 300°C in a nitrogen environment.  To observe the cure behavior, uncured ink was 

used with open pans to prevent movement during outgassing.  The Tg was measured on samples 

that had been cured following the manufacture recommendation (see table 3) tested in sealed 

pans.  The heat evolved during the cure, ΔH, was determined by calculating the area under the 

curve using a linear baseline.  The glass transition temperature was measured using the midpoint 

method.  In addition to DSC, the cure behavior was examined visually.  For all but HP-4032 which 

was too viscous, nanoclay was incorporated and the ink was pre-cured at a low temperature 

mimicking a printed cure cycle.  Success was determined by retention of surface details. 

Processing viability for DIW was determine qualitatively based on a series of questions.  

1) How many extra steps were required to mix the ink?  2) How long did it take to mix the ink?  3) 

Was nanoclay able to be incorporated?  4) Can the ink readily print?  Of the three evaluation 

factors, processing was the least important as scaling up the process would likely use a different 

blending protocol. 

 

3.3.  Results 

The results of DSC are shown in figure 11 and listed in table 5 along with nanoclay-filled 

cured prints shown in figure 12.  Duralco 4460 yielded a Tg of 185°C, 15°C below the requirement.  

Although the ink presented an elevated viscosity, the resin was able to incorporate 12 pph 

nanoclay and maintain shape after curing as depicted in figure 12.a. 

Despite requiring no additional formulation, EP17HT obtained a Tg of 195°C, 25°C lower 

than the expected value.  A moderate (347 J/g) exothermic reaction was produced with the 

reaction peak occurring at 225°C.  At 80°C, a low temperature softening behavior was observed.  

After incorporating 10 pph clay, figure 12.b demonstrates success with maintaining surface details 

when cured. However, the high cost eliminated it from further testing.   

The solid resin, HP-6000 was dissolved into acetone for the addition of curing agent and 

clay.  Testing was conducted after 90% solvent by weight had been removed via a vacuum 
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Figure 11. DSC thermograms of selected epoxies cured with VS03.  The exothermic cures are 
shown in (a) while (b) depicts the glass transition temperatures 

 

Table 5. Cure properties of resins cured with 5 pph VS03 without clay. 
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Figure 12.  Epoxy + clay.  Cure included a pre-cure followed by the manufacture 
recommendation.  Dime is included for size reference. 
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chamber.  While this also had an expected Tg of 220°C, the curing agent was varied from the 

manufacture recommendation, leading to 195°C from the VS03 system.  Here, two exothermic 

peaks were observed at 145 and 170°C suggesting a 2-step reaction which produced 354 J/g of 

heat.  At 110°C, a melting curve is observed. 

Although HP-6000 had a lower Tg than required, the solvent nature of this system could 

allow for other curing agents, such as DDS, to be incorporated.  However, despite removal of 

90% of the acetone, the remaining solvent outgassed during the cure producing an uncontrolled 

foam as seen in figure 12.c.  At this time, the solution is required for clay and curing agent to be 

incorporated.  As such, solid epoxies are unable to be considered. 

As a high-temperature liquid resin, HP-4032SS required the highest crosslinking density 

to reduce the free volume.  This produced 665 J/g of energy during the cure.  Again, two distinct 

exothermic peaks appeared at 135 and 162°C with a third, gradual slope from 175 to 220°C before 

returning to the baseline.  Although HP-4032SS held form well (figure 12.d), at 183°C, the epoxy 

did not reach the required temperature threshold.  

Of the resins, only HP-7250 obtained a Tg above 200°C at 220°C.  However, this ink is 

too viscous to incorporate nanoclay.  Similar to HP-4032SS, there are two reactions occurring 

that present peaks at 137 and 162°C.  However, at 555 J/g, HP-7250 releases 16% less heat.  

For the Epiclon resins, the reduced Tg can be accounted for by the change in curing agent. 

3.4.  Discussion  

The phrase “high temperature” presents a moving target making it difficult to find resins 

that are appropriate.  This is best demonstrated with Duralco 4460.  Rather than providing the Tg, 

the heat deflection temperature was given (260°C) along with 315°C as the upper working 

temperature.  However, no criteria were provided to describe this upper limit.  Although the 

measured Tg of 185°C was lower than expected, this fell within the range for marketed high 

temperature epoxies.  For many applications, 180°C is sufficiently high.   

The glass transition temperature measures a change in the molecular structure that occurs 

over a range of temperatures which can vary among test methods as discussed in chapter 2.2.2.  

Although less accurate, DMA of cast samples provides a measure of bulk properties and often a 

higher value.   
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Several additional solid resins were found with Tg values above that of HP-6000.  

However, the failure of HP-6000 discouraged additional iterations of solid resins.  While a solvent 

could work for an ink with defined escape path, such as a syntactic foam, they are not feasible for 

this method.  

At 220°C, HP-7250 is the only resin from the five candidates the presented the required 

glass transition temperature.  However, even after heating, this formulation remains too viscous 

to incorporate nanoclay.  As such, a blend of two resins, HP-7250 with the lower Tg liquid resin 

HP-4032SS will be required to reduce the viscosity for use in DIW AM.  Further, the flexibility of 

curing agents for HP-7250 allows for additional improvements in the glass transition temperature.   

3.5.  Conclusions 

Five resins were selected for their thermal properties; of these, only HP-7250 achieved a 

Tg > 200°C as desired.  However, HP-7250 (Tg = 220°C), was too viscous to flow or have clay 

incorporated and is unable to be used for DIW AM in the as-received state.  To achieve the 

required flow behavior, HP-7250 will have to be blended with a second resin to reduce the 

viscosity allowing for nanoclay to be incorporated.  A heated extrusion system will also be 

required. 

Slurry-based systems were explored.  This would allow for high Tg solid pre-polymers to 

incorporate the required fillers and print.  However, when curing, the solvent had no viable escape 

path and resulted in an uncontrolled foam.  As such, solid pre-polymers are not viable at this time. 
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CHAPTER FOUR 

DEVELOPMENT OF 6040 EPOXY FEEDSTOCK 

 

Disclosure: This work is to be published in Additive Manufacturing (target: fall 2020).  This work 

was completed and written alone with feedback from the projects PI, Brett Compton. 

4.1.  Abstract 

Additive manufacturing, which allows for design and geometric independence while 

reducing material waste by producing near-net shape parts, has been employed to build polymeric 

lightweight, hollow custom molds, cars, and robotic components.  However, these materials have 

a maximum working temperature that prevents autoclaving, engine, or aerospace applications 

where the design freedom allowed could be beneficial.  Because of the shear thinning and bulk 

cure requirements of 3-D printing, not all materials are able to be formed this way.  This work 

combines a high-temperature, high-viscosity resin with a lower viscosity resin to produce the flow 

properties required while maintaining a high working temperature as determined by the glass 

transition temperature (Tg).  The thermal flow and cure properties were evaluated allowing for a 

warmed extrusion method to be employed.  This ink presented a Tg of 210°C, flexure modulus of 

4.26 GPa and strength of 130 MPa along the print direction.  

4.2.  Materials / Methods 

4.2.1.  Materials 

Three epoxy resins were used in this study: Epiclon HP-7250, Epiclon HP-4032SS (DIC, 

Japan), and Epon 826 (Momentive Specialty Chemicals, Inc. Columbus, OH).  Epiclon HP-7250 

is a high-temperature, semi-solid resin with a room temperature viscosity of 60,000 Pa-s, Tg of 

225°C, density of 1.2 g/cc, and EEW of 162 g/eq.  HP-4032SS is a lower-temperature liquid resin 

with a room temperature viscosity of 12 Pa-s, Tg of 185°C, density of 1.2 g/cc and EEW of 170 

g/eq.  The two Epiclon resins were blended to obtain an extrudable viscosity while maintaining 

thermal properties.  As a reference for printable epoxy behavior [35, 220], Epon 826 is a Bisphenol 

A diglycidyl ether (DGEBPA) with a density of 1.162 g/cc and EEW of 180 g/eq.  1-Ethyl-3-

methylimidazolium dicyanamide (EMIM DCA, VS03) was used as a latent, heat activated curing 

agent (Basionics, Sigma-Aldrich, Inc. St. Louis, MO).  Chemical structures of each were shown in 



 

52 
 

figure 5.  Garamite 7035 nanoclay (BYK-Chemie GmbH, Wesel, Germany) was added as a 

rheological modifier. 

4.2.2.  Methodology  

To determine the optimal blend of HP-7250 and HP-4032SS, six blends - 100 HP-7250/0 HP-

4032SS, 75/25, 60/40, 50/50, 25/75, and 0 HP-7250/100 HP-4032SS – were formulated.  The 

resins were heated to 80°C using a HERATherm oven (Thermo Scientific, Waltham, MA) and 

measured to the appropriate ratios.  The blends were mixed at 1600 rpm for 1 minute using a 

centrifugal planetary SpeedMixer (FlackTek Inc. Landrum, SC).  Viscosity measurements were 

taken on the blends and Epon 826 without the addition of curing agent using 25 mm parallel plates 

with a gap of 0.5 mm and a frequency of 1 Hz on a Discovery HR-2 Rheometer (TA Instruments, 

New Castle, DE).  These tests were conducted at a constant stress of 20 Pa from ~21°C (ambient 

lab temperature) to 160°C at a rate of 10°C/min. 

Next, 5 pph VS03 was added and mixed twice for 4 minutes at 1800 rpm and 0.1 atm. Cure 

analysis was conducted by casing 16 ± 2.5 mg samples were into DSC aluminum pans.  Two sets 

of DSC cure and Tg analysis were run.  The first was on uncured samples in open pans to prevent 

movement during outgassing.  The cured samples (12 h / 160°C + 6 h / 200°C) were broken into 

pieces in sealed pans.  These tests were both conducted with a heating rate of 10°C/min from RT 

to 300°C in a nitrogen environment using a DSC Q20 system (TA Instrument, New Castle, DE). 

Printable inks were formulated by combining a 60/40 ratio of HP-7250 / HP-4032SS and 14 

pph nanoclay.  The nanoclay was added in 2 sets and that were mixed at 1600 rpm for 2 minutes 

after each.  This was remixed under vacuum at 0.1 atm following the same schedule.  Lastly, 5 

pph VS03 was added and mixed twice for 4 minutes at 1800 rpm and 0.1 atm.  Between each 

mixing step, the walls of the mixing container were scraped to ensure complete mixing, and the 

containers were stored in the oven to maintain a low viscosity.   Prior to the addition of curing 

agent, the oven was held at 100°C with mixing occurring once Tresin > 80°C and the material could 

readily flow.  After the addition of the curing agent, the mixing temperature was lowered to 70°C 

to reduce the risk of crosslinking.   

To observe thermal flow properties for both extrusion and cure, a rheological temperature 

sweep was conducted on 6040 ink following the same parameters as with the neat resin blends 

described above.  Further testing was conducted at 50, 70, 90, and 110°C.  To determine the pot 

life, 24-hour isothermal tests were conducted using oscillation rheometry with a frequency of 1 Hz 
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and a constant stress of 20 Pa on 25 mm flat platens at each temperature.  Crosslink initiation 

was defined as the inflection point where the viscosity began increasing, and the pot life was 

determined by the plateau [95, 221].   

Once formulated, the ink was manually loaded into 30 cc syringe barrels (Nordson EFD, 

Westlake, OH) using a spatula. Filled syringe barrels were placed in a 70°C oven for 20 minutes 

prior to being centrifuged at 3000 rpm for 10 minutes using a Sorvall ST-8 Centrifuge 

(ThermoFisher Scientific, Waltham, MA). Heated syringe barrels were insulated with zetex fabric 

(ID 5619T57, McMaster-Carr, Elmhurst, IL) during this degassing step. The heating and 

centrifuging process was repeated 3 times to remove all air bubbles trapped in the resin, as these 

can cause defects while printing. 

During printing, the syringe barrel was maintained at 55°C using a heated syringe wrap (New 

Era Pump Systems, Farmingdale, NY), and the nozzle was held at 70°C via Repetier software 

(Repetier, Germany). The 515-μm-diameter brass nozzle and barrel heater assembly were taken 

from an FFF printer and mated to the syringe barrel using a stainless steel luer-to-thread adaptor 

(SKU 6264IND, Cadence Science). 

G-code prints paths were generated using Scilab software (Scilab Enterprises, France) and 

executed on a custom direct ink writing platform comprising a 3-axis positioning stage (Shopbot 

Tools Inc., Durham, NC), solenoid valves, and an air pressure regulator (Fisnar JB1113N, 

Germantown, WI).  To enable removal of the printed, cured components from the build plate, the 

aluminum build plate was covered with a PTFE-coated aluminum foil (Bytac, Saint-Gobain 

Performance Plastics, Worcester, MA).  Printed objects were pre-cured at 70°C for 24 hours 

before being transferred to an uncoated aluminum sheet for the final step cure at 160°C for 12 

hours followed by 6 hours at 200°C. 

Five separate identical printed honeycombs (40 x 15 x 30 mm, twall = 0.515 mm) were used to 

evaluate the cure behavior at the same four temperatures (50, 70, 90, 110°C) along with a 

10°C/minute ramp.  At each isothermal cure, the honeycomb was placed in a heated oven for 24 

hours.  Because no cure was detected (no color change and resin remained pliable at RT) at 

50°C, an additional 24-hours was provided.  At 110°C, charring was detected (smell) and the 

sample was removed from the oven after 20 minutes with a measured surface temperature over 

300°C.  The ramp cure heated from 25°C to 175°C in 15 minutes.  However, the heat produced 

by the reaction caused the cycle to be ended at 160°C when noticeable charring (smell and smoke 
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escaping the oven) were detected and the sample was allowed to fully cool in the oven before 

removal.   

Thermal expansion and heat deflection temperature (HDT) were measured using a TA 

Instruments Q400 series thermomechanical analyzer (TMA, TA Instruments, New Castle, DE) 

with a heating rate of 10°C/min in air.  Expansion utilized the expansion probe on a 2.4 mm cube.  

The coefficient of thermal expansion (CTE) was the slope of the linear regions below and above 

Tg which was determined by the inflection point. 

HDT tests followed ASTM Standard 2092 [134] in the 3-point bend configuration on a single 

printed filament (4.98 x 1.30 x 0.325 mm).  Based on the cross-section of the printed filament and 

a constant stress of 0.455 MPa, the applied load was calculated following eq. 5 with the HDT 

value recorded at the deflection corresponding to 0.2% strain following eq. 6.  A heating rate of 

10°C/min from ambient to 300°C was followed.  The HDT gives a mechanical guideline for 

maximum working temperatures. 

Both dynamic mechanical analysis (DMA) and flexure tests were conducted on 35 x 6.5 x 1.7 

mm bars printed in both the longitudinal and transverse directions with a span length of 25 mm 

tested in a 3-point bend configuration.  DMA was conducted on the Discovery HR-2 hybrid 

rheometer with the 3-point bend configuration and the same thermal profile as with TMA and DSC.  

Flexure measurements utilized a MTS machine (MTS, Eden Prairie, MN) with a 1 kN load cell 

and a crosshead speed of 0.4 mm/min following ASTM D790 [222].  The top and bottom surfaces 

of printed samples were ground flat. Density measurements was taken using Archimedes 

principle. 

4.3.  Results 

4.3.1.  Resin Blends 

DSC thermograms of the resin blends are shown in figure 13.a. The crosslinking reaction 

creates two exothermic peaks at approximately 135 and 160°C before returning to the baseline 

at 250°C. Crosslinking does not begin until above 110°C, regardless of the composition of the 

blend. The HP-7250 displays the lowest heat of cure at 425 J/g, while the HP-4032SS displays 

the highest heat or cure of 580 J/g (nearly 35% higher than the HP-7250). Blends follow a linear 

rule of mixtures between these two values (figure 13.b). From this information we tentatively 

identify 55°C (one half of the cure onset temperature) as the target working temperature for  
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Figure 13. DSC of blends of HP-SS and HP-7250. a) exothermic plot of resins during cure, b) produced 
heat during cure, c) the glass transition temperature.  Resins are tested prior to the addition of clay at a 
heating rate of 10°C/min. 
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formulation and printing, as this temperature is anticipated to provide reduced viscosity needed 

for mixing (confirmed below) and long pot-life needed for printing (confirmed in section 3.2).   

Glass transition temperatures for the blends follow a linear trend, with Tg increasing from 

175°C to a maximum of 225°C when going from 100% HP-4032SS to 100% HP-7250 (figure 

13.c).  All blends containing 50% or greater HP-7250 by weight yield Tg values above 200°C with 

a 1:1 blend resulting in a Tg of 205°C. 

Viscosity measurements of the neat resin blends are depicted in figure 14.a.  For 

comparison, data for Epon 826 epoxy resin is included as well, as this resin forms the basis for 

many printable epoxy formulations reported in the literature [35, 37], and is easily formulated into 

a successful ink at room temperature. From pure HP-4032SS to HP-7250 there is an increase by 

over three orders of magnitude in viscosity at room temperature, from 12 Pa-s to 60,000 Pa-s.  

Epon 826 has a RT viscosity of 4.4 Pa-s. For the purposes of formulation of a printable ink, this 

viscosity value (η*) will be considered the target upper limit for a candidate blend. The temperature 

at which each blend exhibits this viscosity value is plotted in figure 14.b. Although the least 

viscous, HP-4032SS still requires an elevated temperature of 53°C to exhibit similar viscosity.  

The blends follow a linear increase to 70°C for HP-7250. Based on these viscosity data, the target 

of Tg > 200°C, and the target of 55°C working temperature, a blend of 60% HP-7250 and 40% 

HP-4032SS by weight – hereafter referred 6040 – is selected as the optimal blend to formulate a 

printable high temperature epoxy composite ink. Relevant properties of this blend are summarized 

in table 6. 

4.3.2.  Gel Time and Curing Process 

Figure 15 depicts the storage modulus, loss modulus, and complex viscosity for the 6040 

ink (comprising the 6040 resin blend with 14 pph by weight nanoclay and 5 pph curing agent) 

during a 10°C/min temperature ramp. As compared to the unfilled 6040 resin blend, the addition 

of nanoclay and VS03 increases the room temperature viscosity by 3.5x104 Pa.s to 4.0x104 Pa.s. 

The moduli and viscosity decrease rapidly during the early stages of the temperature ramp. The 

storage modulus and complex viscosity reach a minimum at 90°C, decreasing by approximately 

an order of magnitude from their room temperature values.  Above 90°C, the storage modulus 

and complex viscosity begin to rise rapidly up to 160°C where the slope becomes infinite, 

indicating that gelation has occurred.  The loss modulus reaches a minimum value at 110°C and  
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Figure 14. Rheology of unfilled resin blends. A) viscosity of 
the resins as a function of temperature and B) temperature 
at the target viscosity (4.2 Pa.s) as determined by the RT 
viscosity of Epon 826.  Resins are tested prior to the addition 
of clay and curing agent. 
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Table 6. Measured properties of the resin blends. 
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Figure 15. Viscosity, storage, and loss modulus as a function of temperature 
as the resin crosslinks.  These are overlaid with the gel times at 50, 70, 90, 
and 110°C measured by isothermal rheometry.  All curves correspond to the 
left axis while the bar marks follow the right. 
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increases more slowly with increasing temperature to 130°C above which the measurement 

contains significant noise. 

Overlaid on this plot is the gel time measured via isothermal oscillatory rheometry at four 

different temperatures. Temperatures of 50°C, 70°C, 90°C, and 110°C are selected to encompass 

the working temperature, the temperature at minimum viscosity and a temperature above the 

minimum viscosity where the gel time is expected to be low. From gel time measurements at 

50°C, there is minimal increase in the isothermal viscosity over a 48-hour period, indicating a pot 

life longer than 2 days at this temperature.  At 70°C, the curve follows the traditional S-shaped 

curve [156, 165, 221] for epoxy cure.  An initial flat region occurs before crosslinking begins with 

an increase in viscosity following the cure progressing.  Gelation occurs once the viscosity curve 

plateaus.  Here, crosslinking begins at 9 hours with gelation after 18 hours at 70°C.  Both 90 and 

110°C show immediate crosslinking once the temperature is reached and gel after 3 hours and 

15 minutes respectively.  From these results and various printing tests, a temperature of 55°C 

and 70°C were selected for the syringe barrel and nozzle, respectively, to be used during printing 

of demonstration pieces and test articles described next. 

Four tall, thin-walled honeycomb structures were printed and subjected to the same 

isothermal heat treatment used for the gel time experiments, and a fifth identical honeycomb was 

printed and subjected to a 10°C/min temperature ramp. Each honeycomb was 30 mm tall with an 

average wall thickness of 0.82 mm. Heat treatment at 50°C resulted in no change in color, no 

noticeable loss of shape (figure 16.a), and the material remained soft and pliable after 2 days at 

temperature. After heat treatment at 70°C, the printed structure changed color from the light 

yellow of the as-printed ink to a dark brown (figure 16.b). This color change is characteristic of 

homopolymerization from the use of imidazoles as curing agents in epoxy resin [37], and indicates 

some level of crosslinking has occurred. After heat treatment at 90°C the printed structure attained 

the same color as that treated at 70°C, but honeycomb completely collapsed to 11 mm (figure 

16.c).  Both the treatment at 110°C and the temperature ramp resulted in collapsed structures, 

with some evidence of charring (a rough, black surface and noticeable odor) (figure 16.d,e).  

During the isothermal treatment at 110°C, this charring was observed after only 20 minutes in the 

oven, at which point the surface measured 300°C.  The structure that was subjected to the 

temperature ramp reached 160°C in 14 minutes when it began to release smoke from the oven.  

The oven was immediately shut off and the structure was allowed to cool in the oven. After cooling, 

the structure was inspected and found to possess both smooth edges and a rough, charred base.  
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Figure 16. Single wall honeycombs printed and cured at a) 50°C, b)70°C, c) 90°C, and d) 100°C.  To 
directly compare to the rheological temperature sweep in fig. 15, e) is cured at the same ramp rate of 
10°C/min to 180°C.  Prints have an average wall thickness of 0.7 mm, a height of 30 mm, and length and 
width of 40 and 15 mm respectively.   
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From these results a 24-hour pre-cure at 70°C was selected. Subsequent post-curing experiments 

at 160°C and 220°C demonstrated successful curing without charring or slumping.  

4.3.3.  Printed Structures 

 Selected printed objects are shown in figure 17.  The cone is 100 mm tall with an average 

wall thickness of 1.2 mm (figure 17.a).  Next to the cone is a 15-mm-tall dome with an outer radius 

of 20 mm (figure 17.b).  An infill with a radius of 12 mm allowed for a 35° overhang to both print 

and cure.  Next, a 30 mm wire clip and impeller geometry are shown (figure 17.c, d).  As opposed 

to the other prints which were designed using SciLab programming software, the clip 

demonstrates an object printed from an .stl file generated from a solid CAD model making this 

process more adaptable than previously achieved.  The wire clip also demonstrates the ability of 

the ink to span a free gap to create a mounting hole with a 15° overhang. The impeller has 13 

mm long blades, also printed at a 15° angle.  While the outer and inner cylinders are comprised 

of multiple printed beads, with a wall thickness of 0.9 mm, the blades are comprised of only a 

single print path (0.515 mm thick) and are able to maintain integrity throughout the printing and 

curing process.  The printed bars shown figure 17.e, f are used for DMA and flexure testing.  

These highlight the clean, sharp surface finish that results from heated DIW printing process.  

Printed objects reach 1.33 g/cc as the cured density.  

4.3.4.  Thermal and Mechanical Properties 

 Figure 18.a shows the results of 3-point flexure DMA measured both along the print 

direction (axial) and transverse to it (transverse).  Tg measured using the peak of the tan(δ) curve 

yields Tg = 218°C which decreased to 202°C when measured by the tangent intercept of the 

storage modulus.  There is minimal difference between the two print directions.  At room 

temperature, the storage modulus is 3.2 GPa. This value decreases to 2.5 GPa at 150°C and 1.8 

GPa at 200°C.  

Results from the thermal expansion and HDT measurements are shown in figure 18.b.  

Using the expansion probe, Tg via TMA is 205°C as indicated by a change in slope.  Below this 

temperature, the coefficient of thermal expansion (CTE) is 0.1843 um/°C, and above this 

temperature the CTE is 0.4593 μm/°C.   
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Figure 17.  Selected prints.  a) 100 mm wall cone with a base radius of 20 mm and wall thickness of 1.2 
mm. b) top, bottom, and side view of a 15 mm dome with an outer radius of 20 mm and inner radius of 8 
mm with a star infill connecting the two. C) wire clip as could be used in application with a wall thickness of 
0.9 mm and a screw hole with a 15° overhang. D) impeller with a 30, also printed with a 15° overhang on 
each 12 mm long blade.  Bend bars printed both along and against the testing direction are show in (e) with 

surfaces enlarged in (f) to show detail. 
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Figure 18. Printed thermal properties: a) storage and loss 
moduli and tan(δ) from 3-point oscillatory DMA and b) 
gives the deflection temperature and thermal expansion 

from TMA. 
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From 3pt-flexure geometry of a single row extruded filament, the HDT is measured as the 

temperature at which the maximum flexural strain reaches 0.2% during a temperature ramp at a 

constant applied stress of 0.455 MPa. Minimal deformation occurs up to ~150°C, after which the 

deformation rate increases and reaches a maximum at ~200°C.  Deformation continues above 

this temperature until 0.2% strain is attained at 240°C. 

Room temperature 3pt-flexure tests are shown in figure 19.  The flexural modulus along 

the print direction is 4.26 ± 0.25 GPa and 4.01 ± 0.25 GPa transverse to the print direction.  The 

flexural strength is 130 ± 20 MPa along the print direction and 82 ± 15 MPa transverse to the print 

direction. The strain-to-failure is 2.2% along the print direction and 3.5% transverse to it.   

4.4.  Discussion 

4.4.1. Selection of Blend 

A delicate balance must be met for these inks to be printable via DIW: a resin must be 

able to flow and hold shape.  While elevated extrusion temperatures will allow for the resin to flow, 

HP-7250 has an initial RT viscosity of 60,000 Pa.s and is unable to incorporate nanoclay, failing 

the second criteria.  By using a resin blend will reduce viscosity such that nanoclay can be 

incorporated, the additional requirement of miscibility must be considered.  For the present 

blends, miscibility is confirmed by the presence of a single Tg in DSC as well as the linear 

relationship in the heat of cure [13-15].   

Epon 826 has been shown to successfully print with the addition of nanoclay [7, 16].  

Unlike the high temperature resins, Epon 826 incorporates nanoclay well at ambient 

temperatures.  As such, the room temperature viscosity will be used as a reference for the high 

temperature system.  Comparable flow behavior of the blend at an elevated “working” temperature 

should give the desired mixing properties.   

Although higher temperatures do decrease the viscosity, they also increase the likelihood 

of crosslinking which is irreversible and catastrophic during formulating or printing.  To prevent 

this, the working temperature will be set at 55°C which is ½ the onset temperature as measured 

by DSC.  Although cure does occur below the onset temperature measured by DSC, it occurs at 

a lower rate.  Further work with the cure time shows that the pot life at 50°C is greater than 2 

days. 
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Figure 19. Room-temperature mechanical tests 
conducted in 3-point bend geometry of bars tested both 
axially and transverse to the print direction.  
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The viscosities of the 50:50 and 75:25 blends of HP-7250 : HP-4032SS straddle the target 

temperature of 55°C.  As both of these blends fall above the minimum glass transition temperature 

(200°C) at 205 and 215°C respectively, the printability takes precedence.  Following the linear 

viscosity-temperature trend observed in figure 14.b, at 55°C, a 60:40 blend is selected with the 

highest likelihood of printability.  While a higher content of HP-7250 is likely to yield a higher 

usable temperature, higher extrusion and mixing temperatures would be required, increasing the 

likelihood of premature cure. 

4.4.2. Temperature Profiles for Processing and Cure 

Controlling the inverse relationship between temperature (and crosslinking) and viscosity 

is paramount.  During formulating and printing, enough heat must be added so that the ink can 

readily flow, but not cure.  Conversely, during the heated cure, the resin must be stiff enough to 

hold shape and not flow while still form crosslinking bonds. 

During mixing, lower viscosities allow for faster and smoother blending with less energy 

required.  However, once the curing agent has been added, the elevated temperatures associated 

with these viscosities can induce curing.  As such, prior to the addition of curing agent, the resin 

can be mixed at 100°C which correlates to the resin viscosity below 4,800 Pa.s.  However, once 

the curing agent has been added, the resin begins to crosslink in under an hour at this 

temperature.  By lowering the mixing temperature to 70°C, the working time increases to 18 hours 

while still allowing for sufficient flow to homogenize.   

While mixing occurs in approximately 20 minutes, printing takes longer.  From the initial 

temperature estimation (50°C), there is at least a 48-hour pot life and the viscosity has dropped 

by a full order of magnitude.  While this is effective for the bulk material in the syringe, the resin 

remains too viscous to extrude through at 515 μm nozzle.  The nozzle temperature is increase to 

70°C with an additional 40% reduction in viscosity.  With a 9-hour window before crosslinking 

begins and an additional 9-hours before cure, this provides a long working time without premature 

cure during set up or breaks in extrusion.  Increasing the nozzle temperature provides negligible 

increase in flow properties with a higher likelihood of detrimental early crosslinking. 

When considering cure, the viscosity is at the minimum during the initial heating before 

crosslinking begins.  As such, although both 70 and 110°C present the same viscosity, at 110°C, 

the uncured resin passed through the minimum viscosity at 90°C and the printed honeycomb 
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collapsed in on itself.  Although both the 90 and 110°C prints crumpled, the higher temperature 

lead to a faster cure with a taller failed print.   

Both the 10°C/min ramp and 110°C isotherm cured in under 15 minutes and the reaction 

autoaccelerated, which highlights the safety requirement of understanding the pre-cure.  Despite 

being held at a constant temperature with relatively thin walls of 0.82 mm, the 110°C honeycomb 

reached temperatures above 275°C after 15 minutes.  Although closest to the manufacture 

recommendation of an hour cure at 160°C, the ramp, which reached a maximum oven 

temperature of 170°C in 14 minutes, produced a significant amount of heat.  While the surface 

temperature was unable to be measured, the upper edges of the print became smooth with 

minimal evidence of the print path although clear edges are still present.  Although the base was 

unable to release the produced heat and experienced significant charring, the upper edges melted 

and solidified simultaneously. 

At 90°C, the wall thickness becomes increasingly important.  With thin walls, the prints fail 

due to viscosity as shown in figure 16.d.  However, with thicker walls, the print is able to stand.  

Increasing the wall thickness to that which would be required for scaling up, the ink does char.  

Although a pre-cure at 90°C could reduce the total energy required during cure, the uncertainty 

and variation of print stability and the possibility of a runaway reaction increase the complexity 

and over-complicate the cure. 

Practically, a 24-hour 70°C isotherm is selected for the pre-cure.  Although rheometry 

indicates a gel time of 18-hours, work by Patel et al. suggests that a longer pre-cure improves the 

fully cured properties [17].  Although additional reactions become diffusion-dependent and require 

more time to occur, the epoxy has reached a critical gel point where the matrix is homogeneous 

and weaker regions with a lower crosslinking density do not exist.  The improved moduli and 

lifespan offset the higher energy costs.  

4.4.3. Printed Properties 

From room (21°C) to cure (70°C) temperature, unfilled 6040, figure 14.a, decreases in 

viscosity by 500 Pa-s as compared to 4.4 Pa-s from Epon 826.  As such, more nanoclay is 

required for the printable formulation to maintain structure during cure than had been previously 

optimized [6].  Therefore, the room temperature mechanical properties are predictably lower than 

other systems.  However, the elevated temperature properties outperform other printable epoxies.  

With a Tg > 200°C measured by four different methods, the resin is reliable under varying high 
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temperature applications.  For a more practical evaluation of structural performance, the 

deflection temperature has an increased value of 240°C which allows for a working temperature 

above 200°C.  At temperature (200°C), the flexure modulus is 2.1 GPa as compared to 0.1 – 0.4 

GPa for other resins as seen by DMA [6].  Further, both deflection temperature and mechanical 

strength will increase with the addition of fibers. 

Further, by using a headed extrusion system, many of the beneficial properties achieved 

in fused filament fabrication (FFF) of thermoplastics are able to be achieved.  Unlike many 

thermosets, the resin cools and becomes rigid during printing and larger print overhangs are able 

to be produced.  The rigid previous layers allow for a smooth surface finish.  However, unlike 

thermoplastics, epoxy undergoes a cure before the final part is produced.  As such, the poor 

interlayer adhesion and residual stresses created by laying hot material onto cool material is 

reduced.  When comparing to commercial high-temperature printable thermoplastics, 6040 has 

higher strength and modulus.  Unlike thermoplastic fracture surfaces, there is minimal evidence 

of individual layers and tears propagating along the print path. 

4.5.  Conclusion 

A printable, high-temperature thermoset epoxy blend, 6040, was developed with a Tg of 

210°C.  While higher HP-7250 content could further improve the thermal properties, the higher 

viscosity would increase the required extrusion temperature which could lead to premature cure 

in the nozzle using the current printing methodology.  However, by engaging a warmed extrusion 

process, many of the beneficial properties of thermoplastic printing, such as clean print rows, long 

pot life, and improved stability from printing on rigid layers, are achieved although issues, such 

as poor interlayer strength, are minimized from the heated post-cure. 

 The formulation work is included in its entirely to show the relationship between the 

temperature and viscosity.  From thermal work, it was found that a longer, lower temperature cure 

provided the best cure stability and final properties.  The same temperature that the epoxy was 

cured at also provided the best flow behavior during extrusion.  Although brittle, 6040 presented 

high strength and moduli values that can be further improved with the addition of fibers or other 

reinforcing agents. 
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CHAPTER 5 

GLASS FIBER COMPOSITES 

 

Disclosure:  This work will be published with a submission target of Fall 2020.  This work was 

completed and written alone with feedback from the projects PI, Brett Compton. 

5.1.  Abstract 

Fiber composites are critical for high temperature structural components where specific 

strength and stiffness are required.  Although additive manufacturing boasts superior design 

freedom with reduced geometric manufacturing constraints, most usable materials present 

insufficient mechanical properties for many applications.  This incorporates milled glass fibers into 

the high temperature 6040 epoxy blend developed in chapter 4 to improve the heat deflection 

temperature by 60% and the modulus by 54%.  Glass fibers are selected for their low cost, 

durability in off-axis orientations, and IR transparency for radome applications.  The processing 

mechanisms are examined showing that mixing does not have a significant impact on the final 

fiber length. 

5.2.  Materials / methods 

5.2.1.  Materials 

The same 6040 resin blend of Epiclon HP-7250 and HP-4032SS (DIC, Japan) with 14 pph 

Garamite 7035 nanoclay (BYK-Chemie GmbH, Wesel, Germany) were used in this study (see 

chapter 4.2.2 for the epoxy and clay mixing protocol).  Rather than continuing with VS03 as the 

curing agent, a dicyandiamide with 3% of an inert flow control additive was used instead (Dicyanex 

1400B, DICY, Evonik Corp., Allentown, PA).  DICY is a fine powder that disperses readily under 

mixing, has a shelf stability of up to 6 months, and produces higher glass transition temperatures 

than the previously used EMIM Dicyanimide, VS03 [154]. 

Milled E-glass fibers with a 16 μm diameter and average length of 200 μm were added for 

strength and stiffness (1/16” GF 329, Fibre Glast Developments Corp., Brookville, OH).  The fibers 

have a density of 2.6 g/cc and are incorporated in the as-received form.  Sizing was accomplished 

by reaching an average bulk density of 0.53 g/cc via milling. 
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5.2.2.  Formulation 

The 6040 resin and 14 pph nanoclay were mixed following the same schedule outlined in 

chapter 4.2.2 at 80°C.  Fibers were added in increments of 10 vol% to create 0, 10, 20, and 30 

vol% inks.  After each addition of fibers, the ink was mixed at 1600 rpm for 4 minutes at 0.4 atm.  

Intermediate heating was not required as friction from the fibers created heat reaching 

temperatures of 95°C.  Walls were scraped after each mix.  The resin was allowed to cool to 60°C 

before adding 5 pph of DICY which was mixed at 2350 rpm for 2 minutes at 0.1 atm.  The ink was 

then remixed following the same protocol and loaded into a 30 cc syringe barrel (Fisnar, 

Germantown, WI) using a Speeddisk loading system (FlackTek Ink, Landrum, SC) while still 

warm. 

Ink was extruded using the same custom DIW platform described in chapter 4.2.2.  For all 

ink formulations, the bulk material was held at 55°C with a head rate of 20 mm/s and a 732 um 

nozzle diameter.  The nozzle temperature ranged between 70 and 85°C with the pressure 

between 40 and 85 psi as described in table 7.  Prints followed at 20 h pre-cure at 85°C followed 

by 18 h at 180°C and 6 h at 200°C. 

5.2.3.  Characterization 

Fiber Length 

Prior to the addition of curing agent, ~1 g of each ink was removed, placed on a glass 

slide, and dissolved in acetone to leave the fibers behind.  Images were taken using a VHX-5000 

digital microscope (Keyence Corporation of America, Itasca, IL.).  Approximately 1,500 fibers per 

set were measured by hand using ImageJ software (ImageJ, NIH, Bethesda, MD.) [223]. 

Rheology 

Rheological measurements of the ink were taken using a Discovery HR-2 Rheometer (TA 

Instruments, New Castle, DE) with the 25-mm parallel plate geometry.  Tests were conducted at 

a frequency of 1 Hz with a 1.0 mm gap.  Oscillatory stress sweeps were performed in stress-

control mode from 5 – 10,000 Pa at 70°C which is the base extrusion temperature from the unfilled  
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Table 7. Extrusion parameters of the fiber-filled inks. 
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ink.  Temperature sweeps were conducted at 5°C/min to 95°C maintaining 20 Pa as the constant 

stress. 

DMA / Flexure 

Both DMA and flexure testing were conducted on printed 8 x 2.5 x 35 mm bars along both 

the longitudinal (axial, 0°) and transverse (90°) directions in 3-point loading with a 25 mm span 

length. DMA was conducted from RT to 325°C at a heating rate of 5°C/min with an oscillation 

frequency of 1 Hz on a Discovery HR-2 Rheometer (TA Instruments, New Castle, DE). 

Flexure testing was conducted on an electromechanical load frame (MTS, Eden Prairie, 

MN) with a 1 kN load cell and a crosshead speed of 0.4 mm/min following ASTM D790 [222].  The 

top and bottom surfaces of printed samples were ground flat using a M-Prep 5 polishing wheel 

(Allied High Tech Products, Inc., Compton, CA). 

Deflection 

Heat deflection temperatures were conducted following the same parameters as above 

(chapter 2.2.2 and 4.2.2) on single road printed filaments.  While dimensions changed and the 

force was recalculated for each, the beads had an average width of 1.25 mm and thickness of 0.5 

mm leading to a 20.4 ± 9.4 mN force for the 4.98 mm gap length. For each set, 5+ samples were 

tested. 

Microscopy 

Scanning electron microscopy (SEM) were collected using a Phenom Pro X scanning electron 

microscope with a 10 kV image (Phenom-World BV, Netherlands).  SEM samples were gold-

coated using a SPI-Module Sputter Coater (EDEN Instruments, France) for 10 seconds to provide 

a conductive surface on the epoxy and fibers.  Optical microscopy was also obtained using a 

VHX-5000 digital microscope (Keyence Corporation of America, Itasca, IL.).   

5.3.  Results  

5.3.1.  Fiber Length and Ink Rheology 

Figure 20 depicts the cumulative distribution function and probability distribution function 

for fiber length measurements of the 3 blends as compared to the as-received fibers.  Neither 

content nor mixing time was observed to have a significant impact on fiber length.  The volume- 
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Figure 20. Fiber length of GF after fully mixing in inks.  A) give the probability of fibers shorter than 
some length while b) shows the probability of a fiber at a given length. 
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weighted average fiber length for the as-received fibers was measured as 235 μm.  To incorporate 

10 vol% GF, the ink is mixed for 8 minutes and has an average length of 260 μm; 20 and 30 vol% 

fiber loadings are mixed for 12 and 16 minutes to produce 200 and 266 μm long fibers 

respectively.  With a critical length of 120 μm, by volume, 15% of fibers are shorter this. While the 

as-received fibers are shorter than 10 and 20 vol% processed lengths, this is minimal can be 

accounted for by fibers settling where they have been taken from different sections of the 

container as well as insufficient measurements taken. 

Figure 21 shows the viscosities of the four inks as a function of temperature.  At 21°C, 

there is a 300% increase in viscosity from the unfilled to 30 vol% GF ink (figure 21.a).  The curves 

follow similar decreasing slopes to 95°C where they begin to level.  Practically, the inks are 

extruded with nozzle temperatures between 70 and 85°C.  Figure 21.b shows the viscosity of the 

ink blends bracketing this range.  While the unfilled and 10 vol% GF inks have similar flow 

behavior, the viscosity doubles for the 20 vol% ink followed by an additional 130% increase to the 

30 vol% GF formulation.  For comparison, at 85°C, the 30 vol% formulation has the same viscosity 

(19 Pa.s) of the unfilled ink at 35°C. 

 A rheological stress sweep at 70°C, depicted in figure 22, completes the flow property 

work.  The full curves are shown in figure 22.a while 22.b plots the storage plateau modulus and 

shear yield stress with increasing fiber content.  Here, the left axis shows the plateau storage 

modulus.  Because the storage modulus is higher than the loss modulus for all, this indicates 

solid-like behavior at low stresses [37].  Above a threshold defined by the shear yield stress (right 

axis), the storage and loss modulus cross and the ink displays liquid characteristics.  Inks with 

high plateau moduli have higher stability while the shear yield stress can be related to the required 

extrusion force.  

Again, the unfilled and 10 vol% fiber inks display similar properties.  For the unfilled ink, 

the plateau modulus is 0.98 x 105 which increases by 64% to 1.61 x 105 Pa for the 20 vol% 

formulation.  At 88%, the largest increase is between the 20 and 30 vol% loading fractions.  The 

initial yield stress is 665 Pa and increases by 6% at 10 vol% GF, and an additional 11% and 12% 

for the 20 and 30 vol% fiber formulations respectively.  When comparing the two properties in 

figure 22.b, note the difference in axis: the plateau modulus is plotted following a log scale while 

the shear yield stress is linear. 

When printing, the 10 vol% formulation behaved similarly to the unfilled ink.  It printed 

cleanly and reliably.  However, at both 20 and 30 vol% fiber loading, increased pressure was 
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required for extrusion at higher (85 – 85°C versus 70°C) temperatures.  These prints both 

experienced failure due to fiber conglomeration reducing flow volume.  For the 30 vol% 

formulation, failure occurred approximately 3 times as often as the base ink. 

 

  

Figure 21. Viscosity temperature sweep.  a) shows the 
decrease in viscosity as a function of temperature for the 
4 blends while b) depicts the viscosity over the nozzle 
extrusion temperature range. 
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Figure 22. Rheological oscillatory stress sweep of fiber-filled 
formulations at 70°C. a) storage and loss modulus versus oscillatory 
shear stress and b) linear viscoelastic plateau storage modulus and 
shear yield stress for the inks. 
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5.3.2.  Thermal and Mechanical Properties 

The heat deflection temperature conducted at 0.455 MPa stress is shown in figure 23.  

The dashed line at -0.2% strain marks the temperature at which HDT is measured.  For the unfilled 

ink, the HDT is 212°C which increases to 320°C for the fiber formulations.  While there is some 

variation (319, 321, and 324°C increasing with fiber content), the presence of fibers yields over a 

100°C increase the thermal stability.   

 Thermal expansion occurs until 120°C for the neat 6040 and 160°C for the fiber-filled inks.  

While there is variation in the degree of expansion, it does not correlate to fiber content, 

suggesting that this is more related to the print itself.  A second plateau from 220 to 280°C is 

observed for the fiber-containing formulations.  Above the Tg of 280°C as measured by tan(δ) in 

figure 24.c, deflection begins in earnest.   

Figure 24 shows the (a) storage and (b) loss moduli along with (c) the tan(δ) curves from 

3pt-flexure DMA both along (axially) and against (transverse to) the print direction.  The glass-

transition temperature ranges between 245 and 258°C when measured by the storage modulus 

and 279 and 284°C by peak tan(δ) for all except the 30 vol% formulation in the axial direction.  

Due to printing difficulties, the 30 vol% prints had surface defects that were larger than could be 

removed by sanding.   

 The largest increase (57%) in the storage modulus measured at 30°C occurs between the 

unfilled and 10 vol% GF formulation tested parallel to the print direction.  For measurements 

conducted at 200 and 300°C, this trend holds.  The unfilled ink had the largest decrease in 

modulus as the temperature increased.  Although to a lesser degree, the largest improvement in 

the transverse direction comes from 10 vol% fiber formulation except at 30°C where the 10 to 20 

fiber vol% is superior.  The modulus values at 30, 200, and 300°C along with Tg are compiled in 

table 8. 

The results of 3-point bend flexure testing are depicted in figure 25.  From the 

representative plot in figure 25.a, there appears to be a decrease in strain-to-failure with 

increasing fiber content.   A change in the slope appears at 2% and 1% strain for the unfilled and 

10 vol% fiber formulation respectively.  Both 20 and 30 vol% fiber formulations rupture soon after.  

Further, the apparent work-to-failure decreases with the fibers as well. 

From unfilled to 30 vol% fibers, the flexure modulus (figure 25.b) increases by 160% axially 

from 4.93 to 13.2 GPa axially and by 60% from 4.2 to 6.9 GPa transverse.  At 54% axially  
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Figure 23. Deflection temperature for the 4 inks taken at a 
constant stress of 0.455 MPa.  The dashed line indicates -
0.2% strain at which the HDT is measured.  
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Figure 24. 3-point flexure DMA measurements as a function of temperature. (a) storage and (b) loss 
modulus and (c) tan(delta) curves for the 4 inks in both 0° and 90d print orientations. 
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Table 8. Storage modulus at temperature along with the Tg for the four inks. 
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Figure 25. 3-point bend flexure testing. Representative data (a) and bar plot averages of the b) modulus, c) 
flexure strength, and d) strain to failure measured by 3-point flexure testing.  Error bars show the maximum 
and minimum values from each set. 
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and 25% along the print direction, the largest increase in modulus appears with the addition of 10 

vol% fibers, similar to in DMA.  Compared to DMA, the flexure moduli are 33% higher on average.  

This could be from the cooler testing environment (21 vs 30°C), sample preparation, or the testing 

method itself.  While flexure samples were polished on both the top and bottom surfaces, DMA 

samples were only ground flat along the top. 

While the flexure modulus increases in both print directions, the flexure strength, figure 

25.c, shows a different trend.  Axially, the strength remains relatively level from 146 to 138 MPa, 

decreasing by 10% initially and 13% in total across the 4 samples.  Across the print direction, the 

strength remains constant until a 40% decrease between 20 and 30 vol% fibers.  The expected 

increases in strength from the fibers are not observed.  This could be from increasing porosity 

with fiber content as depicted in figure 26 a-d and the short fiber lengths as discussed in chapter 

2.5.3.   

Lastly, the strain-to-failure decreases with fiber content.  With a high-crosslinking density 

required for a high Tg, 6040 is a brittle material.  Although fiber pull-out was observed, the short 

fibers were unable to carry significant load.  Further, the addition of short fibers decreases the 

amount of stretch possible by the polymer matrix.  Results are summarized in table 9 and the full 

curves can be found in appendix B. 

 Images of representative axial flexure samples in figure 25.a are shown in figure 26.  All 

images are shown in testing orientation with SEM microscopy taken away from the fracture 

initiation point.  The relative image location in the prints vary to observe a variety of failure 

behavior.  Optical microscopy of selected samples tested in transverse can be found in appendix 

C. 

 Optical microscopy is shown in section 1.  While the unfilled, 10, and 20 vol% fiber samples 

(A-C) were printed individually as can be noted by the ribbed edges, the 30 vol% prints were 

unable to extrude and samples were cut from a previously made sheet.  The short print path 

between turning at the edge could account for the increased number of fiber clogs [49].  In all, 

there appear to be more pores along the bottom surface than the top.  While the pore size and 

frequency increase with fiber content, they appear at nodes from the print path and could be 

associated with under-extruding.  However, increasing the extrusion pressure and decreasing the 

head speed had no effect.  For the 30 vol% formulation, pores appear throughout the print, not 

limited to nodes.  These vary in shape from a distorted triangle which has been observed from 

thermoplastic printing with improper height control [49, 92] to an rounded oblong from the fiber  
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Table 9. Mechanical properties of the printed fiber composites. 
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Figure 26. Micrographs of fracture surfaces from flexure testing of axially printed samples. (A) 0 vol% GF, 
(B) 10 vol% GF, (C) 20 vol% GF, and (D) 30 vol% GF.  Set X1) is taken using optical Keyence microscopy 
at 50x while X2-4) are from SEM at 500x, 5,000x, and 10,000x respectively.  The highlighted boxes in X2 
correlate to X3 (larger) and X4 (smaller) of the same series. 
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content.  At high loading volumes, inconsistent and irregular flow can account for inadequate 

volume control. 

 Both the unfilled and 10 vol% fiber formulations show a fracture initiation point.  The 

unfilled 6040 (A1) begins to break at a stress concentration in the lower middle of the print.  At 10 

vol% fibers (B1), the failure began from a subsurface pore on the lower left side.  Failure 

progresses smoothly and the print splits into two even pieces.  Neither the 20 (C1) nor 30 vol% 

(D1) have a clear fracture initiation point.  For both, surface defects are present along the bottom 

surface that were unable to be polished away.  These defects likely acted as stress 

concentrations.  However, there is no smooth region indicating a failure zone.  While all unfilled 

tests broke in 3 pieces with a triangular section breaking off the bottom half, the fiber-filled 

samples split vertically into two halves with visible fibers extruding past the fracture surface. 

 The first set of SEM images (row 2) are taken at 500x magnification.  Here, the images 

are the size of the nozzle although specific locations along the print paths are unknown.  In all 

SEM images of the unfilled sample, surface roughness is visible.  Looking at B2-D2, fibers appear 

oriented along the print direction as determined by circular cross-sections.  The percentage of 

non-oriented fibers increases with fiber content.  There appears to be some preferential 

distribution with rows of fibers separated by matrix material.  Both the 10 (B2) and 20 (C2) vol% 

fiber prints show long fibers laying across the fracture surface.  These appear to have been pulled 

from the matrix during fracture before falling on the surface.  At 30 vol% (D2), the fibers have 

clumped and this long fiber pull is less common.  However, irregular sized pores can be observed 

along the upper and left side of the image. 

 Neither 20 nor 30 vol% show evidence of crack propagation.  At 5,000x magnification (row 

3), individual fiber rupture is visible.  Image B3 falls along a fracture path and the two fibers have 

ruptured from seemingly different directions.  This suggests that at this location in the print, there 

are multiple crack propagation paths.  In C3, evidence of three fibers is shown.  Clockwise from 

the upper left corner, the first fiber was pulled out and removed by the other half of the sample.  

The second shows a smooth surface with no evidence of fracture.  Lastly, a clear initiation point 

is present and fracture appears to travel towards the upper left corner, towards the center of the 

sample.  At 30 vol% loading (D3), fibers are concentrated.  Surface defects are visible which could 

be from the high loading and resultant shear during mixing. 

 The last series (row 4, 10,000x magnification) shows individual fiber pullout.  Comparing 

the neat 6040 surface with fiber filled, the matrix roughness appears to decrease around fibers.  
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Image B4 depicts the start of fiber-matrix deboning.  In C4, the end of a pulled fiber shows surface 

texture of both the matrix and fiber.  Lastly, fiber-fiber interactions at 30 vol% loading (D4) are 

visible.   

5.4.  Discussion 

5.4.1.  Fiber Length and Printability 

Glass fibers show promise for processing in this method as compared to carbon fibers.  A 

similar study by Pierson et al. had a 95% reduction in size at similar mixing parameters [49].  

However, longer initial fibers are essential.  While shorter fibers allow for a higher fiber loading, 

60% of the given fibers are an ineffective length leading to decreased properties.   

With polymer AM, fibers are included to improve the strengths of the matrix; for extrusion-

based systems, processing requirements dictate the maximum loading.  Higher fiber 

concentrations increase the ink viscosity, reducing the flowability and lead to clogging in the 

nozzle which can stop printing entirely.  Unlike resin, fibers do not decrease in viscosity as the 

temperature increases.  As such, the effect of heating the resin for extrusion reduces with higher 

fiber loading formulations.  The minimum viscosity prior to the addition of curing agent is reached 

at 95°C for all blends.  Further increasing the temperature above 85°C for the 30 vol% formulation 

would result in premature crosslinking.  Additionally, the less viscous resin would reduce the 

matrixes ability to carry fibers increasing the likelihood of fibers clogging in the nozzle during 

extrusion. 

Although there is greater variation in plateau modulus than the shear yield stress across 

fiber contents, these do not accurately predict flow behavior.  From these, the 10 and 20 vol% 

formulations have the most similar values and could be expected to behave similarly.  This is not 

the case.  While additional factors also negatively impact print behavior, such as increased fiber 

conglomeration in the nozzle with fiber content, this can be observed from decreasing flow 

throughout the duration of the print until failure.  Although this does occur at high loading fractions, 

particularly at 30 vol% fiber loading, it does not account for poor extrusion behavior at the onset 

of printing.  Rather, the shear yield stress describes the extrusion behavior.  At 70°C, over 800 

Pa of shear force is required for the 30 vol% fiber ink to flow.  With current capabilities, this is 

unable to be provided and the temperature must be increased.  The shear yield stress for the 



 

88 
 

unfilled and 10 vol% formulations fall between 650 and 700 Pa.  Both readily flow at moderate (40 

– 50 psi) extrusion pressures and print well. 

For this epoxy system, 10 vol% fiber loading behaves similarly to the unfilled ink.  Unlike 

the 20 and 30 vol% fiber inks, the resin extrudes smoothly throughout the entire print.  As the fiber 

content increases, issues with printing due to nozzle clogging and resin curing become more 

common.  As the fiber content increased to 20 vol%, flow was not accessible using this extrusion 

system.  Increasing the temperature to 75 and 85°C for the 20 and 30 vol% fiber formulations 

allowed for printing.  However, fiber clogging was prevalent where the 30 vol% formulation failed 

due to inadequate flow mid-print approximately 3 times as often.  For both formulations, resin 

remaining in the heated nozzle without flow began to crosslink and gelled in under 30 minutes.  

This is due to the decreased volume of resin in the system leading to a lower activation energy 

per mass. 

5.4.2.  Printed Properties 

Thermally, the presence of fibers increases the HDT regardless of the concentration.  Because 

of this, the 10 vol% GF formulation, which has the best processing characteristics, is sufficient for 

property improvement.  There is minimal change in the glass transition temperature with fiber 

content.   

Figure 27 shows the storage modulus anisotropy factor from DMA (figure 24) with respect 

to temperature.  As predicted, the difference between the two print directions increases with both 

temperature and fiber content.  For the unfilled blend below the glass transition temperature (Tg 

= 250 – 285°C from E’ and tan(δ) respectively), the anisotropy factor remains at 1 ± 0.5 showing 

good interlayer adhesion.  This supports the claim that the post cure of the part improves the 

overall uniformity.  As fiber content increases, this factor increases with all 30 vol% fiber prints in 

the axial direction being more than twice that in the transverse.  At 10 vol% fiber loading, this 

factor remains at 1.5 ± 0.9 from RT to 200°C.  The close correlation is encouraging because it 

suggests that, although properties decrease with temperature, they follow a similar rate.  

However, the increase above the glass transition temperature indicates that the interlayer bonds 

are the weakest and print direction will become more pronounced at elevated temperatures. 
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Figure 27. Anisotropy factor from DMA storage moduli at 30, 100, 200, and 
300°C as a function of fiber content. 
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 Although the modulus does increase with fiber loading, it is to a lesser degree than 

expected.  Figure 28 shows the flexure moduli plotted against the upper and lower bounds and 

Halpin-Tsai predictions.  The upper bound is given by the rule of mixtures (eq. 17) while the lower 

bound is given by the harmonic mean (eq. 18).   

 By the Halpin-Tsai model, the fiber shape and length are accounted for through ξ, but 

fibers are assumed to be fully aligned.   With a 16 um fiber diameter and an average fiber length 

falling between 200 and 266 μm, the Halpin-Tsai shape factor for aligned fibers, ξ, ranges from 

25 to 46 as shown in table 10.  The shape factor is 2 for the samples tested 90° from the print 

direction.  However, when using these values, predicted values are 50 – 50% higher than 

observed. From qualitative fitting, a shape factor of 8 fits the axial data while 0.5 fits the 

transverse.   

 From optical microscopy, pores are prevalent in each print.  Accounting for the void 

content following Boccaccini’s model, the effective matrix moduli decreases by 36% from unfilled 

to the 30 vol% ink.  Using this modulli with Halpin-Tsai’s model and the calculated shape factor, 

the predicted flexure moduli comes within 7% of the measured values.  Additional considerations 

of the fiber orientation and adhesion will further reduce the moduli. 

Fiber-filled composites are commonly vacuum sealed during the cure to prevent the 

formation of pores [180].  However, one of the benefits of AM is the lack of molds required.  

Although pores are an issue, traditional methods of removing these during the cure negate the 

benefits of printing.  In all of the prints, the voids fall predominantly along the bottom surface.  This 

could be due to insufficient flow early in the print, the nozzle temperature not equilibrating, or the 

wrong initial print height.  With the given system, the print is operating at the maximum 

temperature and pressure.  However, prints were run at two different print speeds, 18 and 20 

mm/s, with the same behavior occurring at both suggesting that insufficient flow is not the culprit.  

Although slower speeds could be tested, this is unreasonable for practical applications.  Further, 

if this were the case, voids would be likely to be found throughout the print as print behaviors 

remain consistent.  Because the bottom and top surfaces are polished prior to testing which 

removed 5 – 10% of the total thickness on average, an initial row height mismatch is less likely.  

These location and shape of these defects are reminiscent of those seen using a FFF system for 

a thermoplastic [49, 85].  Because of this, the issue is likely related to the nozzle temperature  
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Figure 28.  Flexure moduli values plotted against the upper (ROM) and lower (harmonic mean) bounds and 
Halpin-Tsai approximations.  The dashed Halpin-Tsai lines indicate calculated ξ factors while the solid are 
experimentally fitted.  The blue X’s mark the Halpin-Tsai limits after accounting for pores in the matrix. 

 

Table 10. Measured and calculated flexure moduli with relevant fitting parameters for both Halpin-Tsai 
and Boccaccini’s approximations. 
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during early extrusion and pauses between prints.  However, that falls outside the scope of this 

work.  While this work provides a proof of concept for glass fiber printability, a sizing factor will be 

required for continued work.  Additionally, at 20 and 30 vol% fiber loading, the fracture surfaces 

indicate a high percentage of voids and surface defects.     

Strength values were expected to increase.  Even accounting for the void content using 

Boccaccini’s model, the failure strengths fall below the predicted values.  The lack of increase 

could be due to the amount of short fibers and possible poor fiber-matrix bonding.  Prior to 

incorporation to the matrix, 15 vol% of the fibers were already below the critical fiber length.  These 

fibers did not notably contribute to the final strength of the composite and could have decreased 

the strength of the matrix.  Rather than measuring the critical fiber length, an approximation using 

the matrix and fiber strengths was utilized.  As such, the actual critical length could have been 

longer leading to a larger negative effect of the short fibers.  Additionally, although the fibers did 

not experience breakage during mixing, a high shear process was incorporated.  Heat produced 

from fiber impact and friction raised the temperature to upwards of 110dC immediately after 

removal from the mixer.  While the fibers may not have fractured, surface defects could decrease 

the initial fiber strength and cause weak spots that prematurely ruptured.  However, at this time, 

that falls outside of the scope of this work. 

5.5.  Conclusions 

This work incorporated up to 30 vol% glass fibers to a high temperature, high viscosity 

epoxy matrix.  Unlike carbon fibers, processing did not break the fibers.  This allows for longer 

mixing, assumedly better incorporation, and a larger importance on initial fiber size.  However, 

milled fibers were selected which lead to a varied initial fiber length with 50% of fibers below the 

critical length for this system. 

 Increasing the fiber content led to worse printing conditions with the extrusion nozzle 

clogging for both the 20 and 30 vol% fiber formulations.  An upper viscosity limit was found at 30 

vol% GF although voids were common and independent of printing.  Further, extrusion behavior 

was unpredictable and with failure during printing occurring in over 60% of all prints.  

 The presence of fibers was able to improve the heat deflection temperature by over 100°C 

with no additional improvement from an increased fiber content.  The 10 vol% glass fiber 

formulation extruded smoothly and improved the modulus by 54% along the print directions and 

25% against it.  Glass fibers present a viable filler material for AM applications.  Further, using a 
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larger extrusion nozzle, as would be required for scaling, will allow for longer fibers to be used 

allowing for additional improvements. 
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CHAPTER SIX 

CONCLUSIONS 

 

In this study, a high-temperature (Tg > 200°C), glass-fiber filled, epoxy resin feedstock was 

developed for direct-ink write additive manufacturing.  From experimental results and 

observations, the following conclusions can be drawn: 

Although “high temperature” epoxies exist, the criteria can be vague and the curing agent 

plays a large role in the final properties.  Although using DDS as the curing agent can increase 

the glass transition temperature by more than 100°C as compared to VS03 or DICY, it is unable 

to readily incorporate at moderate temperatures.  When mixed at elevated temperatures, DDS 

increases the uncured Tg and solidifies liquid resins.   

While a solvent-based extrusion method would allow for solid epoxies to be utilized, the 

solvent is unable to escape from bulk material leading bubbling and an uneven surface.  Further, 

if printed with solvent, the epoxy-nanoclay system does not maintain sufficient shear thinning 

behavior that gives printed parts stability.  However, if provided stability, such as with 

microballoons for a syntactic foam, the printed solution could maintain structure during extrusion.  

Provided that printed parts have thin walls, microballoons could provide stability as excess solvent 

leaves the printed system.  As such, the high temperature solid epoxies and DDS could be 

incorporated and printed.  

By using a warmed extrusion process, some of the beneficial properties from FFF of 

thermosets can be achieved.  The previous layers solidify as they cool providing a solid base 

which allows for higher degrees of overhang.  However, because a secondary cure is required, 

issues with interlayer bonding and delamination are less.  As such, this process produces smooth 

prints that, provided that the structure is maintained during the cure, can achieve complex 

geometries with similar (4.59 ± 0.34 GPa) flexural modulus behavior regardless of the print 

direction. 

The blending of two resins reduced the viscosity, allowing for nanoclay to be incorporated 

and a warmed extrusion process to be possible.  The miscibility was determined by the glass 

transition temperature and lack of phase separation.  By comparing to Epon 826, a common 

epoxy for printed systems, a target “extrudable” viscosity was able to be selected.  Mixed 

properties followed ROM and a 60:40 blend of HP-7250 and HP-4032SS was selected with a Tg 
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of 210°C and 55°C as the processing temperature.  However, with the current system, the nozzle 

had to be held at a higher temperature for the resin to flow.  Further rheological work showed that 

this system has a 48+ hour pot life at 50°C which reduced to 18 hours at 70°C which allowed for 

sufficient extrusion time before cure began. 

Because many high temperature epoxies are developed for thin-film applications, the 

prescribed cure process is unable to be observed when scaling up the volume.  Crosslinking is a 

highly exothermic reaction and the produced heat can lead to autoacceleration.  Further, parts 

produced by DIW must remain rigid during a heated cure.  As the temperature increases, the 

crossover point between the storage and loss moduli decrease and stability is lost.  A pre-cure 

step at a low temperature (70 – 85°C) increases the stability while also managing the heat 

released from the reaction.   

The addition of glass fibers improved the flexure modulus.  However, the failure stresses 

remained consistent (134 ± 12 MPa) along the print direction and decreased by 30 MPa in the 

transverse direction.  Although glass fibers experience less breakage during processing than 

carbon fibers, the as-received milled fibers exhibited a large (20 - 1300 μm) length distribution.  

Additional work can sieve the fibers to remove those which are below the critical length.  Doing 

so will improve the fibers effectiveness and improve strength values.   

At 20 and 30 vol% fiber loading concentrations, fiber clogging becomes increasingly 

relevant and can be detrimental to printing.  When printing with 30 vol%, failure occurred 3 times 

as often.  However, the 10 vol% formulation printed similarly to the unfilled resin and fiber clogging 

was minimal.  Thermally, the presence of fibers improves the HDT by 100°C regardless of the 

concentration.  Mechanically, higher fiber contents do increase the strength and modulus but at 

diminishing rates.  The largest stepwise increase in modulus is from 0 to 10 vol% glass fibers.  As 

such, this formulation is recommended for continued work. 

Continued work needs to include lifetime analysis at elevated temperatures.  Although a 

heat deflection temperature of 320°C is encouraging, HDT is a single short-term data point.  Creep 

testing will provide better insight to the upper temperature limit for extended periods of time.   

The impact of fiber length, loading volume, and resin viscosity on fiber clogging needs to 

be understood and modeled.  While longer fibers improve strength values more so than shorter 

fibers, they can also increase extrusion difficulties.   
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Appendix A: All epoxies considered for this work 

 

 

Room temperature viscosity and glass transition temperature of epoxies considered for this work.  

Glass transition temperatures are presented as reported on the safety data sheet.  The curing 

agents and profiles vary among companies.  All DIC resins are cured with DDS which is unable 

to be incorporated for DIW at this time.  As such, values are artificially high.  4460 from Duralco, 

EP17HT from Masterbond, and HP-4032SS, HP-7250, and HP-6000 from DIC were selected for 

testing based on Tg values, viscosity, cost, and availability.  For comparison, Epon 826 is liquid at 

room temperature.   
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Appendix B: Epoxy-GF flexure results 

 

Flexure tests results for a) unfilled, b) 10 vol%, c) 20 vol%, and d) 30 vol% glass fibers.  Solid 

lines denote axial testing while dashed lines indicate transverse. 
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Appendix C: Fracture surfaces of transverse tested samples 

 

Fracture surface of a) unfilled 6040, b) 10 vol%, c) 20 vol%, and d) 30 vol% fiber formulations 

tested in 3pt-flexure against the print path.  
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