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Abstract. We study the conductance through two types of graphene trannses:
nanoribbon junctions in which the width changes from wide narrow, and curved
nanoribbons. In the wide-narrow structures, substargfidction occurs from the wide-narrow
interface, in contrast to the behavior of the much studiedtedn gas waveguides. In the
curved nanoribbons, the conductance is very sensitive tailslsuch as whether regions of
a semiconducting armchair nanoribbon are included in theecustructure — such regions
strongly suppress the conductance. Surprisingly, thipragsion is not due to the band gap
of the semiconducting nanoribbon, but is linked to the yatlegree of freedom. Though we
study these effects in the simplest contexts, they can becéaghto occur for more complicated
structures, and we show results for rings as well. We comcthdt experience from electron
gas waveguides doestcarry over to graphene nanostructures. The interior imted causing
extra scattering result from the extra effective degreefseafdom of the graphene structure,
namely the valley and sublattice pseudospins.

PACS numbers: 73.63.Nm, 73.21.Hb, 73.23.Ad, 73.61.Wp

1. Introduction

There has been tremendous interest recently in investgatrbon-based nanoelectronics,
first with carbon nanotube5][L] 2, 3] and more recently witaptpene[[4]. In that context,
researchers have intensively studied graphene “nanariiibe infinite, straight strips of
graphene of constant width — both theoretically([5/ 16, 17.181® [11,[12] 13, 14, 15,16,
[17,[18,19[ 20, 21, 22, 23] and experimentally![24, 25,/ 262872930 31]. Most of the
theoretical effort has been focused on nanoribbons of daigrconstant width. However,
more functionality, beyond that of a mere wire, might be gdiif one considers more general
and realistic nanoribbons in which the width of the ribbommges, it curves, or particular
junctions of nanoribbons are formed.

On a more fundamental level, the continuing great inteneghée effect of reduced
dimensionality, such as electron-electron interactiomsréduced dimensions, provides
motivation for studying quasi-one-dimensional systemsrapBene’s unusual dispersion
(massless Dirac fermions) and reduced density of statdsedtérmi energy, for instance,
suggest potential for novel effects. Of course, one shordtdnderstand the non-interacting
system before turning to interactions.

Graphene nanoribbons are closely analogous to electroegui@es patterned out of
two dimensional electron gas (2DEG), usually in GaAs or otemiconductor systems

[32,[33,[34/ 36/ 36, 37, 38. B0, 140,141, 42]. However, therenisnaportant difference in
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how the confinement is achieved. While in 2DEG waveguidesethetrons are trapped in
the transverse direction of the waveguide by applying arg@teby means of local gate
electrodes, graphene nanoribbons are directly cut out afget graphene flake. This gives
rise to different types of boundaries, depending on thectioe in which the nanoribbons are
cut with respect to the graphene lattice. If the longitubiiti@ction of the nanoribbon s along
the direction of nearest neighbor carbon bonds, the reguttbundary is of “armchair” type,
while cutting at30° with respect to the nearest neighbor carbon bonds resudtsigzag”
boundary (see figurg 1). It has been shown that the low eneapepies of nanoribbons
with boundaries other than these two are equivalent to tbbsigzag nanoribbons [43]. On
the experimental side, there has been recent progress irottioig the edges of graphene
samplesl[44, 45], which is essential to enable physicigisdbe the influence of edge details
on transport properties.

This paper is organized as follows: First we study one of tbetrsimple systems beyond
a straight nanoribbon with constant width, namely widermatunctions, by which we mean
two semi-infinite nanoribbons attached together to fornep.siVe calculate the conductance
of such ribbons by numerically solving the tight binding nebdand also obtain analytical
results for the case of armchair boundaries. In the secordveanvestigate numerically the
conductance of curved wires cut out of graphene. In this teseidth of the nanoribbon is
approximately constant, but the longitudinal directiothwiespect to the underlying graphene
lattice and hence the transverse boundary conditions ehlaaglly. In contrast to systems
with sharp kinks and abrupt changes in the direction, whalretbeen investigated in earlier
work [[7,[13[14[ 18, 20, 21, 46], we focus here on smooth bends.

In both cases we find remarkable deviations from the conduetaf 2DEG waveguides
that are clear signatures of the sublattice and valley @sgoéfreedom in the effective 2D
Dirac Hamiltionian describing graphene’s low energy eatoins,

_ OzxPx + OyPy 0
H = (ya ( 0 P +C7ypy ) . (1)
Here the matrix structure is in valley spaee,, are Pauli matrices in pseudo- or sublattice-
spin spacep,/, are the momentum operators, and ~ 10°m/s is the Fermi velocity.
Alternatively, from a strictly lattice point of view, the diations that we see are caused by
the basis inherent in graphene’s hexagonal lattice.

For our numerical work, we use a nearest-neighbor tightibghnanodel taking into
account the2p,-orbitals of the carbon atoms|[4,]47] and solve the transpailem using
an adaptive recursive Green function method [48] to obtaénconductancé&’. Throughout
the paper, lengths are given in units of the graphene lattostant: which is /3 times the
nearest-neighbor carbon-carbon length, while energiesraunits of the nearest-neighbor
hopping constant = 2hvr/(v/3a) =~ 3eV.

2. Wide-narrow junctions: Changing the width of a nanoribbon

The simplest way to form an interface within a nanoribbormighange its width. In this
section we investigate the conductance of infinite nananiskin which the width changes
from wide to narrow, which then can be viewed as a junctionvben a wide semi-infinite
nanoribbon and a narrow one. Figlite 1 shows three exampseEbfjunctions with armchair
(ac) and zigzag (zz) type edges. We denote the width of thewar wire byW; and the

width of the wider wire byi;. A naive expectation for the dependence‘bbn the Fermi

energyEr is the step functiod’(Er) = N1 (Er)2e?/h whereN; is the number of occupied
transverse channels in the narrow wire. This would be cbifélcere were no reflection at



Interfaces Within Graphene Nanoribbons 3

W,
-
a) b)
O: Sublattice A
@ : Sublattice B

Figure 1. Wide-narrow junctions for different types of nanoribbonsnfied from a hexagonal
lattice. The width of the narrower part 1§77 while that of the wider part i$15. The gray
shaded sites denote infinite extension. (a) Abrupt junctietween armchair nanoribbons.
(b) Abrupt junction between zigzag nanoribbons. (c) Grhduaction between zigzag
nanoribbons.

the wide-narrow interface. Realistically, however, thisrecattering from this interface, and
so the steps in the conductance are not perfectly sharp.

For usual 2DEGs modeled by either a square lattice of tighdibg sites or a continuum
Schrddinger equation with quadratic dispersion, theildetahape of7( Er) has been studied
previously. Szafer and Storie [36] calculatgétF ) by matching the transverse modes of the
two semi-infinite wires. The inset in figuré 2 (b) comparebtiginding results (using a square
grid) with mode-matching results in this case @k = 2177 in the one-mode regime of the
narrow part. The agreement between the two is excellent that the resulting conductance
step is very steep.

2.1. Armchair nanoribbons

For armchair nanoribbons, the analysis proceeds in mucdaiine way as for the usual 2DEG,
square lattice case. At a fixed Fermi energy in the effectivadequation, the transverse
wavefunctions for the various subbands are mutually odhay as explained further in
[Appendix A. Performing a matching procedure similar to treetd in Ref/[36], one calculates
the conductance from the overlap of transverse wavefumstim the two sides of the wide-
narrow junction. A detailed derivation is presentefl in Apgie B|.

Figure[2 shows the conductance resulting from the numesigation of the matching
equations at energies for which there is one propagatingerimotthe narrow part. In addition,
the conductance obtained from tight-binding calculatifmmsvide-narrow junctions between
armchair nanoribbonsis shown (using the hexagonal gradhttice). Figureél2 shows(Er)
for different combinations of metallic and semiconductimanoribbons (cfl_Appendix]A).
The agreement between the two methods is extremely good:tkeesingularity associated
with the subband threshold in the wider ribbon is reproducetitail by the mode matching
method, showing that the effective Dirac equation dessribe system very well.

In figure[2, we see immediately th&t(Er) for the armchair nanoribbon case differs
greatly from the normal 2DEG:(EF) [inset of figure[2 (b)]: the rise from zero to unit
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Figure 2. Conductance of wide-narrow junctions in armchair nanamisbas a function
of Fermi energyE'r: results from tight binding (solid lines) and mode match{sguares,
obtained by solving equatiof (B112) numerically). The gyewindow corresponds to the
full one-mode regime of the narrow part. The behavior depeml whether the widths
W1,2 correspond to semiconducting or metallic armchair natorils. (a) Semiconducting-
semiconducting¥{/; =99, W2 =199). (b) Metallic-semiconducting9g, 199). (c) Metallic-
metallic 08, 197). (d) Semiconducting-semiconducting9( 109). Inset in (b): Conductance
of a wide-narrow junction in a usual 2D electron gas: tighmding calculation (solid line) on
a square latticely7 = 200 as, W2 = 400 as) and solution of matching procedure (circles,
equation (2) of Ref[[36])¢s is the nearest neighbor hopping energy on the square lattide
as is its lattice spacing.

conductance imuchslower in graphene, taking at least half of the energy windodin some
cases [see e.g. figuré 2 (a)] not reaching the saturatiom alall. For completely metallic
nanoribbons, the lineshape is very different [panel (c}] tre conductance is suppressed at
low Fermi energies (see also refererice [49]).

2.2. Zigzag nanoribbons

For zigzag nanoribbons, the analysis does not proceed gsdysems in the usual 2DEG
or armchair nanoribbon cases: the transverse wavefussctiepend on the longitudinal
momentum — similar to 2DEG wires with a magnetic field — andraseorthogonal at fixed
Fermi energy (cf. Appendix]A). Because this orthogonatitysed in the matching method of
[Appendix B, we cannot apply it to the zigzag case.

Figure[3 (a) shows numerical tight binding results (&Er) in two different systems
with zigzag edges: one with an abrupt change in width (rededuand one with a gradual
connection (blue curve), as depicted in figures 1 (b) andréspectively. Note first that the
conductance s close to its maximum value only in small wimslof energy, as in the armchair
nanoribbon case and in marked contrast to the usual 2DE@restpttice situation.

In the abrupt case, one sees pronounced antiresonances taréshold energies for
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Figure 3. (a) Conductance of wide-narrow junctions in zigzag narmmits as a function of
Fermi energy W1 ~ 19, Wa =~ 76). Curves for a structure with abrupt change in width
[red line, depicted in figurel1 (b)] and one with a graduallamging width [blue dashed line,
depicted in figur&ll (c)] are compared to the number of prajpaganodes in the narrow wire
(black line, i.e. the maximum possible conductance). (lopBRbility density (color-coded in
arbitrary units) of an electron entering the system fromrihgrow region atFr = 0.03 ¢.
Only the density on the B sublattice is shown. A and B denatestiblattice type at the edges.
The density decreases by a factor of about 20 from the B edg @ the A edge (blue).

transverse modes in the wide nanoribbon. In order to seethists due to the boundary
conditions satisfied by the transverse modes in a zigzagritdoom, consider the following
argument. As seen in Figures 1 (b) and (c), there is only obkafice at each zigzag edge.
In the effective Dirac equation one has a spinor with ent@sesponding to the sublattices,
thus the boundary condition is that one of the entries haarndst at the edge while the other
component is determined by the Dirac equation and is in gémert zero at the boundary
[9]. One finds from equatioi (A.24) (e.g. from a graphicalsioin) that the higheFr is
above the threshold of a mode, the closer the transversenwanlger gets to a multiple of
/W and the closer the value of the spinor entry in question gmesto. For our situation,
then, the matching of a transverse mode in the narrow namamilfwhich is already far
above the threshold of the mode) with one in the wider naboribis particularly bad at
the threshold of the latter and gets better with increasiegnienergy. This explains the
observed antiresonancesG{Er).

For the gradually widened junction, we insert another zigzdge to interpolate between
the wide and narrow nanoribbon [see figlure 1 (c)]. In this cémemodes of the two infinitely
extended parts are not directly matched and thus the shdirpssomances are not present.
Note, however, the complete suppressiorGoéit very low energies. In this regime there is
only a single mode propagating in the wide nanoribbon as aglh the narrow one. This
state is located mainly on the B sublattice close to the ledgre and on the A sublattice on
the upper edge. Since the sublattice at the lower edge chémge A to B at the junction [cf.
figure[d (c)], this state cannot be transmitted and the caadge is zero. This is confirmed
by the intensity distribution plotted in figuké 3 (c). In th@ma realistic next-nearest-neighbor
hopping model, the situation is the same for most of the simgbde regime but changes
for very low energies, when the so-called edge states apagadingl[6] 9]. In that regime,
the two states are exponentially localized at the upper ewdd edge, respectively, and are
independent of each other. Thus, the one localized at thega gdnsmits whereas the one
localized at the B edge is blocked [22].
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Figure 4. Schematics of curved graphene nanoribbons. zz denoteabtzon with a zigzag
edge as in figurgl1 (b), ac denotes an armchair edge, and “pBtekea zigzag-like boundary
as explained in the text. (a) Parameters defining a “sidestapribbon”; it is point symmetric
about its center. (b) A structure with a single zigzag-arancinterface. (c) Fory > 30°,
there will be small regions with armchair edges (shaded, bdse have a widthV,. and
behave as ih Appendix]A. (d) Fer< 30°, no armchair regions form; the curved nanoribbon
is zigzag-like throughout.

Summarizing the results for the wide-narrow junctions, we $hat the behavior of
graphene nanoribbons differs substantially from that ef familiar 2DEG situation. The
matching at the graphene junctions is much less good, lgaiina suppression of the
conductance from the expected nearly step-like structure.

3. Curved graphene nanoribbons

Curved nanoribbons are defined by cutting smooth shapes amt infinite graphene sheet.
Since the graphene lattice is discrete, the resulting bayrid not perfectly smooth but will
have edges of zigzag and armchair type in certain direciiengll as some intermediate edge
types. However, according to Akhmerov and BeenaKker [#8]intermediate boundary types
behave basically like zigzag boundaries for low energied,\@e thus call these boundaries
“zigzag-like”.

In figurel4 we show schematically several of the curved nébaris studied. A “sidestep
nanoribbon” consists of an infinitely extended horizonigzag ribbon of widthi4/, followed
by a curved piece with outer radius of curvatdite and inner radiu®?; = R, — W, a second
straight piece making an angjewith respect to the first one, a curve in the opposite diregtio
and finally followed by another infinitely extended zigzaghadbbon. The details of the
system’s edge depend on (1) If v = 30°, the middle straight piece has armchair edges.
(2) If v > 30° the middle straight piece is zigzag-like with the domingtsublattice at the
edges reversed from that for the two horizontal nanoribbdnghe curved part, there is a
small region where the edges are locally of armchair typaelfienote the angle of the local
longitudinal direction from the horizontal l# this happens a@=30° [see figuré X (c)]. The
inset in figuréb shows the lattice structure of such a curegibn. (3) Finally, ify < 30°, the
middle straight piece also has zigzag-like edges, but theimting sublattice at the edges is
the same as for the horizontal ribbons. In this case, no lmcathair region forms a8 is
always smaller thaf0° [see figuré ¥ (d)].

In these various cases, then, differanérior interfacesare formed between zigzag and
armchair nanoribbons. We will see that the type of interfigceritical in determining the
properties of the curved nanoribbons. In addition, the reatd the armchair nanoribbon —
whether it is semiconducting or metallic — has a large effecthe conductance. Thus the
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Figure 5. Conductance of sidestep nanoribbons as a function of Ferengg withy = 60°

and R = 259 for two widths of the armchair regioy/,c = 68.5 (solid red, corresponds to

a semiconducting ribbon) arid,,. = 68 (dashed blue, corresponds to a metallic ribbon). The
solid black line shows the number of propagating transversdes in the zigzag leads. Note
that the internal interfaces between the zigzag and semhicximg armchair regions are much
more reflective than for the metallic armchair case. Inske [attice structure of the first curve
of a sidestep nanoribbon showing the armchair region foratéa-=30°.

width of the armchair regiofiV,. is an important parameter; according to equation (A.15)
one has a metallic nanoribbon4f1+ W,./a)/3 € N and a semiconducting nanoribbon
otherwise.

Figure[® shows the conductance of sidestep nanoribbonsy0°, for which a small
armchair region is formed in each of the curved parts. Whemildth of this armchair region
corresponds to a metallic nanoribbon, the conductancesiedlly 2¢2/h — the maximum
possible value — throughout the one-mode regime of the gibgaads (V.. = 68, dashed blue
line). In striking contrast, when the width is jusf2 larger (red line) the conductance is
strongly suppressed. Resonance peaks result from Faboyt&havior caused by scattering
from the two armchair regions which define a “box” for the mélstraight region. We find
this behavior consistently for all sidestep wires in whicinehair regions form that have a
width corresponding to a semiconducting nanoribbon.

Figurel® shows the dependence on the andig plotting the conductandg) averaged
over all energies for which there is one propagating modaénzigzag leads. Foy < 30°
there are no armchair regions in the curved parts of thetsireicand the average conductance
is very close to the maximum value in all cases studied. As ssathe critical angle df0°
is surpassed and small armchair pieces form in the curvesahductance depends strongly
on the exact value dV,.. If W, corresponds to a metallic ribbof?) remains high and is
rather independent of. On the other hand iFV,. corresponds to a semiconducting ribbon,
(G) suddenly drops by more than 80 percent and then remainsxpyaiely constant upon
further increase of. The constancy ofG) in the respective regimes supports the statement
of Ref. [43] that straight boundaries that are neither dyxadtarmchair nor exactly of zigzag
type behave like zigzag boundari@® summarize, if a curve in a zigzag nanoribbon causes
two semiconducting armchair regions to appear, then a véfective barrier is formed which
causes very high reflectivity.
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Figure 6. Average conductance for two sidestep nanoribbons as aidanof angle
(R2 = 259). The average is taken over all Fermi energies in the onesmedime of the
zigzag leads. In one structure, the armchair region is iiet@lue triangles,W,c = 68)
while in the other it is semiconducting (red circlé§,. = 68.5). Note the sharp decrease in
conductance in the semiconducting case when the armchgasditst form aty = 30°. The
dotted lines are guides to the eye.
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Figure 7.  Tight binding band structures of infinitely extended graghenanoribbons.
(2) Armchair nanoribbon with a width of8.5 (same width as the local armchair piece
forming in the structure of figurEl5, red curve). (b) Zigzaghebbon with a width of
(39+ %)\/3 =~ 68.4. The semiconducting energy gap in the armchair nanoriblo@s dot
correspond to the energy region in fighie 5 in which the cotathee is suppressed.

The simplestidea to explain this effect would be that at loergies there is by definition
a gap in a semiconducting ribbon and since this means thera@apropagating states in
the local armchair region, one expects the conductance Buppressed because electrons
have to tunnel trough this region in order to be transmittddwever, this doesot explain
our findings: the energy range over which the conductancersapion occurs is much
larger than the energy gap of the semiconducting region.adhif is given by the energy
range of the one-mode regime in the surrounding zigzag .pafts make this clear, we
show the bandstructures of both a semiconducting armciidiom and a zigzag ribbon of
approximately the same width in figurke 7 (both nanoribboasrmitely extended). One can
clearly see that within the one-mode regime of the zigzagrhbon, in which the states are
completely valley polarized, there can be several profpagatodes in the semiconducting
armchair nanoribbon, so the suppressiozahust be of a different origin.

Furthermore, it isnot the bare zigzag-armchair junction that leads to suppressed
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Figure 8. Single zigzag to armchair interface conductance of a smbeitid through0°,

as depicted in figurgl4 (b)R2> = 259). Both semiconducting (solid red lin&V,. = 68.5)
and metallic (dashed blue lin&/,. = 68) armchair nanoribbons lead to good conductance.
The solid black line shows the number of propagating trarsevenodes in the zigzag lead,
corresponding to the maximum possible conductance (inrinetzir lead at energies above
the semiconducting gap there are always more or equally maales propagating).

Figure 9. 90° curve with horizontal zigzag lead and vertical armchaidle@ local armchair
region forms at =30° and a local zigzag region at=60°.

conductance, but rather it is necessary to have two zigzagpidiffering by an angle of more
than30° and being separated by a small armchair region. This cardpaiséwo stages. First,
figure[8 shows the conductance of an infinitely extended gigemoribbon connected to an
infinitely extended armchair nanoribbon vid@ curve, the structure shown schematically in
figure[4 (b). In the one-mode regime of the zigzag ribbon, drelactance is maximal for the
case of a metallic armchair ribbon. For a semiconductingchain ribbon, the conductance
is, of course, zero for energies below the gap, but it in@eaapidly up t®e?/h for larger
values ofEr. Thus, a single zigzag to semiconducting-armchair intexfeenducts well.

For the second stage of the argument, consider a bend th@fgfrom an infinite
zigzag lead to an armchair one, as depicted in figlire 9. Irrasito the30° zigzag-armchair
connection just discussed, this one has three interfacegér zigzag and armchair regions.
Figure[I0 shows the conductance of sevéfil curved nanoribbons. As for the sidestep
ribbons, the conductance is suppressed when a semicomglacthchair region is present in
the curve. Note that the suppressiom@t due to the infinitely extended armchair lead, for
which we chose a semiconducting nanoribbdnih 10 (a) and alleeine in 10 (b).

If one makes the natural assumption that the armchair regitmas a blocking barrier,
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Figure 10. Conductance o$0° curved nanoribbons with either a semiconducting (solid red
or metallic (dashed blue) armchair regionéat= 30°. (a) Semiconducting armchair lead:
Wac =69 (solid red) and¥V,. =69.5 (dashed blue). (b) Metallic armchair leald/,. =88.5
(solid red) andiV,. = 89 (dashed blue). Black line: number of propagating modes én th
zigzag lead. R2 =259.)
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Figure 11. Average conductance as a function of the length added torthehair region

of a 90° curved nanoribbon. The structures are as in figule 10 (a):orildbons with a

semiconducting (red) or metallic (blue) armchair regiorfat 30°. The average is over
all Er above the semiconducting gap of the armchair lead and inrteermde regime of the
zigzag lead. The dotted lines are guides to the eye.

one would expect the blocking to become more effective aatimehair region is lengthened.
However, this is clearlynot the case in the data shown in figlird 11. The systemdg’a
curved nanoribbon in which the armchair regiorfat 30° is lengthened byA L; we plot
(@), the conductance averaged over all energies in the one-regdee of the zigzag lead,
as a function ofA .. For a metallic armchair region in the curve, the conduaascoughly
independent oA L, as expected. Surprisingly, for the semiconducting cageconductance
increasesas a function ofA L.This establishes, then, thabnductance suppression occurs
when two zigzag-armchair interfaces occur in close spagtiakimity.

Our numerical results suggest that the evanescent modes armchair regions play an
essential role. They are necessary, of course, in order tchntize propagating zigzag mode
to a solution in the armchair region. For short armchair @égbe evanescent modes from the
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Figure 12. Conductance of rings with armchair lead?o( = 259). Red solid: Ring with
semiconducting armchair regions in both armg.(= 69 in the right arm andV. = 68.5

in the left). Blue dashed: Ring with metallic armchair regian the right arm (/. = 69.5)
and semiconducting in the lefti(. = 69). Inset: Schematic of the ring structure; red shading
indicates regions with armchair edges, as in fifire 4.

two interfaces overlap. We conjecture that these evanesuzttes are mutually incompatible
in the semiconducting case, destroying the possibility afahing on both sides at the same
time, while they are compatible for metallic armchair regio If one has a long armchair
piece, the evanescent modes decay leading to independtfiinggat the two ends.

4. Conclusions

We have shown in a variety of examples that interfaces witlriaphene nanoribbons
can strongly affect their conductance, much more so thamenfamiliar 2DEG electron
waveguides and wires. First, for wide-narrow junctions; main results are figurdés 2 and
[3. For both armchair and zigzag nanoribbons, changes irhwicltas a substantial source of
scattering, reducing the conductance. Second, for curaadribbons, our main results are
figures 68, an@11. There is a strong reduction in conduetar®n a curve joining two
zigzag regions contains a semiconducting armchair region.

The effect of such internal interfaces will certainly bet fiel more complex structures
as well. As an example, consider rings for studying the matibn of the conductance
by a magnetic field through the Aharonov-Bohm efféct [50]guFe[12 shows such a ring
schematically together with its conductance in two cases.fok the curved nanoribbons,
when semiconducting armchair regions occur in the curved pfathe structure, the
conductance is substantially reduced.

In considering experimental manifestations of interndkifaces, disorder, and in
particular the edge disorder which has received attenggently [44] 45, 51, 52, 53, b4],
may be important. The effects we observe in our calculatiahsnost likely also be present
in structures with disordered edges, provided the disoslant too strong. Consider, for
example, the suppression of the conductance in curved.wlitghe inset of figur€ls as well
as in figurd D, one can see that between the armchair and th&gziggions, the edges are
not perfect. We believe that when the edge disorder is wealginto allow for pieces with
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armchair edges, the suppression should still be present.

The underlying reason for the impact of internal interfacas be viewed in two ways.
From the lattice point of view, it arises from the additionamplexity of the hexagonal lattice
with its basis compared to the standard square lattice. valgutly, from the continuum
point of view, it arises from the extra degrees of freedoneieht in the Dirac-like equation
governing graphene — those of the sublattice and valleydospins. As development of
graphene nanostructures accelerates, the impact of ahtieerfaces should be taken into
account when considering future carbon nanoelectronieraess.
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Appendix A. Wavefunctions of graphene nanoribbons in the Diac equation

We calculate the eigenfunctions of graphene nanoribbotiengi the effective Dirac model.
This has been done by Brey and Fertiglin [9] and Pezeslin [10]. The effective Dirac
equation taking into account contributions from both wadlés given by([4]

Hd(r) = E®(r) (A1)
x=0 x=W

! ! _

y:W»x X X X a

3
a) b)

. oy y:O — X X X X
"2
7 0 Sublattice A

® : Sublattice B
X

Figure Al. Infinitely extended graphene nanoribbons. (a) Armchaibaibalong they-
direction. The outermost rows of atoms arecat= a/2 and W — a/2 respectively. Hence,
the width of the ribbon is given by%¥/ = W — a. The boundary condition however is, that
the wavefunction is zero at = 0 andz = W respectively. (b) Zigzag ribbon along the
direction. Here the width of the ribbon & = 1 —2a/+/3. Since first row of missing atoms
at each side is only on one sublattice, the boundary conditiequires only the corresponding
part of the wavefunction to vanish.
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with
_ OxPx + OyPy 0
H = VR < 0 — 0P +pry ) (A2)
and
B(r) = [@x(r), Drer(r)]T = [Da(r), ®p(r), By (r), Dp(r)] . (A3)

Here®; and® g are spinors with two components corresponding to coniohstfrom the
two different valleys andK” respectively® 4, 5 and®’, , , are scalar wavefunctions, where
the subscripts! and B stand for the two sublattices (see figlire Al). The total wavetion
containing the fast oscillations from thé-points is then

o= (L) -ox () o

Appendix A.1. Armchair nanoribbons

We consider an armchair nanoribbon which is infinitely egtshalong they-direction [see
figure[Al (a)]. Using the Bloch ansatz

O(r) = eV (x) (A.5)
and the Dirac equatiof (A.1), one obtains

—i(ky + 02)pB () = cpa(x) (A.6)

i(ky — 02)0a(z) = edp(2) (A7)

—i(ky — 02)dp(x) = edly (x) (A.8)

i(ky + 02)¢4 (2) = edlp() (A.9)
and, by applying the Hamiltonian twice,

(ky — 0)d(x) = €*6(x) (A.10)

with e = E/(hvr). According to figuré_Al (a), the correct boundary conditi® for an
armchair nanoribbon ig)(r) = 0 for z = 0 andz = W. (For the connection between
the nanoribbon width? used previously andil’, see the caption of figufe Al1.) The ansatz
¢ (x) = Ae'"® + Be™ " ¢lp(z) = Ce'd® + De~ "1 solves both the B sublattice parts
of equation[(A.ID) with=®> = k7 + ¢ and the boundary condition, if we require

nm

Gn = W K withneZ (A.11)

where K = 47 /(3a). We find thatB = C = 0 andA = —D. Using equationd(Al6) and
(A.8) to determined 4(z) and ', (x) from ®(x) and @5 (z), we thus find that, up to a
normalization factor, the wavefunctions are

o(x) ~ [(qn — iky)eiq"z/e, elan® —(gqn — iky)efiq"z/e, —efiq"I]T , (A.12)
Y(r) ~ e sin [(g, + K)z] [(gn — iky) /e, 1]T ) (A.13)

The wavefunctiony(r) is, up to the spinor part, very similar to that of a 2DEG
waveguide: the width of the ribbon is a multiple of half thartsverse wavelength. However,
here the transverse wavelength is of order the lattice anhgtot the system’s width, sinece
is of orderTV /a for the energetically lowest lying modes. Neverthelessytavefunctions for
different transverse quantum numberare orthogonal at a fixed Fermi energy. Note that for
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evanescent modes we just have to consider imaginary wavestsh), = ix, and equations

(A1), (A12), and[(A.IB) still hold.

The energy for this solution is

E=+hop /K2 +¢2. (A.14)

Therefore one has a metallic spectrum if there is a stateqyith 0. From equatior (A.111) it
follows immediately that this is the case whenever

4W

e N. (A.15)
3a

Appendix A.2. Zigzag nanoribbons

For a zigzag nanoribbon along thedirection [see figure A1l (b)], the Bloch ansatz is
o(r) = e "g(y) (A.16)

the Dirac equation becomes

(ke — 0y)oB(y) = edaly) (A.17)
(k +0y)oa(y) = edp(y) (A.18)
— (ks + 0y) ¢ (y) = €d/a(y) (A.19)
(ke — 0y)a(y) = €dp(y) (A.20)
and one has
(k2 — 02)0(y) = €9(y) - (A.21)

The boundary condition for a zigzag ribbon differs from tf@tan armchair ribbon in
that the wavefunction has to vanish on only one sublattie@eh edge [9]1)4(z,y = 0) =
Yp(z,y = W) = 0. With the following ansatz fof 4 (z) and®’, (z),

baly) = A + Be™™  ¢l,(y) = Ce™V + De™V (A22)

(A21) yieldse? = k2+22, and the boundary condition requirds= — B andC = —D. Thus
the valleys completely decouple for zigzag nanoribbons, equations[(A.18) and (A.20)
yield

Qg ~ [sin(zy), {1 ks sin(zy) + zcos(zy)} Jel” (A.23)
wherer = +1 for the K andr = —1 for the K’ valley. The boundary condition for thB
parts of the wavefunction provides an equation that detezsiihe allowed values far

ky = —72/tan(zW) . (A.24)

Thus the transverse quantum number is coupled to the Ialiggbmomentum, as in 2DEG
waveguides in the presence of a magnetic field. In order ttevequation[(A.23) in a
symmetric way, we square the quantization condifion (Aet¥) use the relatiok? = €2 — 22

to obtain

€2 = 22/sin?(zW). (A.25)
Using [A.24) and[(A.Zb) in equatioh (A.R3) leads to
Py i ~ [sin(zy), s(z,€)sin{z(W — e (A.26)

with s(z, €) = sign[ez/ sin(zW)]. ¢,From this symmetric expression, one clearly sees that the
total weight on each sublattice is the same.
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Figure A2. Profile of transverse wavefunctions in a zigzag nanoribljay: = 2.25/W, €=
2.89/W.(0)z=2/W, e=22/W.(C)z=0, e=1/W. )z =4i/W, e =0.15/W.

The transcendental equatidn (A.24) has real solutioasR only for [¢| > 1/W. These
states correspond to bulk states: they are extended overttble width of the ribbon. For
le| < 1/W there are only imaginary solutioris € R, corresponding to the so-called edge
states[[6] 9], which are exponentially localized at the sdayed live predominantly on one
sublattice at each side, as can be seen from equation| (ARZ8)the special case = 0
corresponding t¢e| = 1/W equation[(A.2F) results in

i s~ [y, —sign(e)(y - W), (A27)
i.e. a linear profile of the transverse wavefunction. Figl&8) shows the profile of several
transverse zigzag modes.

Appendix B. Mode matching for wide-narrow junctions with ar mchair edges

We derive a set of analytic equations that determine thestnéssion amplitudes for wide-
narrow junctions with armchair edges as introduced in se@il. We label the transverse
modes in the narrow part of the system¢¥ (z) and those in the wide part by* (z). The
=+ stands for propagation in positive and negatjvéirection respectively. Furthermore we
use latin subscripta andm for ¢ and greek subscriptsandw for x. Then we know from

APBERAA tht

o (z) = \/1W1 sin (nma/Wh) [(gn F iky )/ €, I}T (B.1)
Xk (z) = \/II/V_Q sin (v /Wa) [(q0 F ikl) /e, I]T . (B.2)

n/v

Here, we define thé,’ " to lie always on the positive real axes for propagating statel on
the positive imaginary axes for evanescent states

R (B.3)
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The full scattering wavefunction for an electron incideminf the wide side in mode

y<0: Yulr,y) = xE@)e™ Y+ 3y (x)e (B.4)
y>0: du(,y) =Yt (@)Y, (B.5)

where the sums run over all modes, both propagating and ssene Matching the two parts
at the junction, defined to he= 0, we obtain

)+ Z TuwX,, (T Z trnw <pn . (B.6)

We can extract the scattering amplitudes by projectingaigation first on the wide side and
then on the narrow side. First, multiplying the B-part ofstieiquation by{x;/ﬁ(a:)] and
integrating from0 to 15 yields

Pow = =0 + Y 2bnuby, (B.7)

for which we usedf0 dx {x,ﬂ gz )} ) xij(:c) = 16,,» and the definition

Wa

pEE = /dx {XVB( )r oF p(x). (B.8)
0

SincecpiB(:v) vanishes forr > Wy, one can replace the upper limit of integratidn, by
Wi.
Second, we project equatioh (B.6) onto modes of the narrad.leMultiplying by

[0, (:c)}T and integrating frond to W, yields
- 1 -7.n |2 2
dit Zd+ = 503 (an + k1" + €) the (B.9)
where we have introduced the definitions (note the spina@ripnoduct)
Wi
dt = [ e ] xE @ 5.10)
0

and have again used orthogonality of the transverse wagtfuns, now in the form

Wy
t 1 n
/0 dz [p}(2)]" ¢ (x) = 52 (lgn + ik + €%) G - (B.11)
Combining equation$(Bl.7) and (B.9), we obtain
1 o _
> (Z 2dt bt — 53 (Ign + k2> + €2) 5nm> b = dif S —db T (B.12)
which can be written as a matrix equation in the form

This can be solved for thg,,, by introducing large enough cut-offs far andv and then
inverting the now finite matrix/.
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The total transmission for a particle incident in magdé&om the wide side is given by

o= Tw= 3 |2t =3 |Z|t?.  (®14)
n prop. n prop. 7Y n prop. ' Y
Finally, the conductance of the system is connected to#msinission via Landauer’s formula
2¢2
G="- w;p T, . (B.15)

In these last two equations the sums run over propagating@snaaly.
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