3,533 research outputs found

    Interfaces Within Graphene Nanoribbons

    Get PDF
    We study the conductance through two types of graphene nanostructures: nanoribbon junctions in which the width changes from wide to narrow, and curved nanoribbons. In the wide-narrow structures, substantial reflection occurs from the wide-narrow interface, in contrast to the behavior of the much studied electron gas waveguides. In the curved nanoribbons, the conductance is very sensitive to details such as whether regions of a semiconducting armchair nanoribbon are included in the curved structure -- such regions strongly suppress the conductance. Surprisingly, this suppression is not due to the band gap of the semiconducting nanoribbon, but is linked to the valley degree of freedom. Though we study these effects in the simplest contexts, they can be expected to occur for more complicated structures, and we show results for rings as well. We conclude that experience from electron gas waveguides does not carry over to graphene nanostructures. The interior interfaces causing extra scattering result from the extra effective degrees of freedom of the graphene structure, namely the valley and sublattice pseudospins.Comment: 19 pages, published version, several references added, small changes to conclusion

    HASH(0x563d4403dc78)

    Get PDF
    HASH(0x563d43ff2c58)HASH(0x563d440b63a0

    Boundary Terms in Supergravity and Supersymmetry

    Full text link
    We begin with the simplest possible introduction to supergravity. Then we discuss its spin 3/2 stress tensor; these results are new. Next, we discuss boundary conditions on fields and boundary actions for N=1 supergravity. Finally, we discuss new boundary contributions to the mass and central charge of monopoles in N=4 super Yang-Mills theory. All models are in 3+1 dimensions.Comment: 15 pages. Talk given by P. van Nieuwenhuizen at the Einstein-celebration gravitational conference at Puri (India) in December 200

    Therapeutic assessment of N-formyl-methionyl-leucyl-phenylalanine (fMLP) in reducing periprosthetic joint infection.

    Get PDF
    Despite many preventive measures, including prophylactic antibiotics, periprosthetic joint infection (PJI) remains a devastating complication following arthroplasty, leading to pain, suffering, morbidity and substantial economic burden. Humans have a powerful innate immune system that can effectively control infections, if alerted quickly. Unfortunately, pathogens use many mechanisms to dampen innate immune responses. The study hypothesis was that immunomodulators that can jumpstart and direct innate immune responses (particularly neutrophils) at the surgical site of implant placement would boost immune responses and reduce PJI, even in the absence of antibiotics. To test this hypothesis, N-formyl-methionyl-leucyl-phenylalanine (fMLP) (a potent chemoattractant for phagocytic leukocytes including neutrophils) was used in a mouse model of PJI with Staphylococcus aureus (S. aureus). Mice receiving intramedullary femoral implants were divided into three groups: i) implant alone; ii) implant + S. aureus; iii) implant + fMLP + S. aureus. fMLP treatment reduced S. aureus infection levels by ~ 2-Log orders at day 3. Moreover, fMLP therapy reduced infection-induced peri-implant periosteal reaction, focal cortical loss and areas of inflammatory infiltrate in mice distal femora at day 10. Finally, fMLP treatment reduced pain behaviour and increased weight-bearing at the implant leg in infected mice at day 10. Data indicated that fMLP therapy is a promising novel approach for reducing PJI, if administered locally at surgical sites. Future work will be toward further enhancement and optimisation of an fMLP-based therapeutic approach through combination with antibiotics and/or implant coating with fMLP

    AC0(MOD2) lower bounds for the Boolean inner product

    Get PDF
    AC0 ◦MOD2 circuits are AC0 circuits augmented with a layer of parity gates just above the input layer. We study AC0 ◦ MOD2 circuit lower bounds for computing the Boolean Inner Product functions. Recent works by Servedio and Viola (ECCC TR12-144) and Akavia et al. (ITCS 2014) have highlighted this problem as a frontier problem in circuit complexity that arose both as a first step towards solving natural special cases of the matrix rigidity problem and as a candidate for constructing pseudorandom generators of minimal complexity. We give the first superlinear lower bound for the Boolean Inner Product function against AC0 ◦ MOD2 of depth four or greater. Specifically, we prove a superlinear lower bound for circuits of arbitrary constant depth, and an Ω( ˜ n 2 ) lower bound for the special case of depth-4 AC0 ◦ MOD2. Our proof of the depth-4 lower bound employs a new “moment-matching” inequality for bounded, nonnegative integer-valued random variables that may be of independent interest: we prove an optimal bound on the maximum difference between two discrete distributions’ values at 0, given that their first d moments match

    Clocking plasmon nanofocusing by THz near-field streaking

    Get PDF
    • …
    corecore