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Abstract
AC0 ◦MOD2 circuits are AC0 circuits augmented with a layer of parity gates just above the input
layer. We study AC0 ◦MOD2 circuit lower bounds for computing the Boolean Inner Product
functions. Recent works by Servedio and Viola (ECCC TR12-144) and Akavia et al. (ITCS
2014) have highlighted this problem as a frontier problem in circuit complexity that arose both
as a first step towards solving natural special cases of the matrix rigidity problem and as a
candidate for constructing pseudorandom generators of minimal complexity. We give the first
superlinear lower bound for the Boolean Inner Product function against AC0 ◦MOD2 of depth
four or greater. Specifically, we prove a superlinear lower bound for circuits of arbitrary constant
depth, and an Ω̃(n2) lower bound for the special case of depth-4 AC0 ◦ MOD2. Our proof of
the depth-4 lower bound employs a new “moment-matching” inequality for bounded, nonnegative
integer-valued random variables that may be of independent interest: we prove an optimal bound
on the maximum difference between two discrete distributions’ values at 0, given that their first
d moments match.
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1 Introduction

We study lower bounds for computing the inner product function by AC0 circuits with parity
gates on the level just above the input gates (AC0 ◦MOD2). As we will review, this problem
has emerged as a common, particularly simple special case of several major open problems
in Computational Complexity, about which we know surprisingly little. We therefore view
progress on this special case as a benchmark for new techniques in circuit complexity for
these larger questions.

A core program in Computational Complexity is to understand the power of restricted
circuit families. One facet of such understanding is to identify functions that these circuits
cannot compute. In practice, it turns out that once we can prove such lower bounds, then we
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become surprisingly facile with the class, gaining the ability to learn the functions computed
by such circuits [14] (and this is necessary in some form [10, 11, 29]), the ability to generate
inputs that are pseudorandom for the class [16, 18] (again necessary in some form [7, 24, 27]),
and more. As a consequence, “understanding” the class is often identified with proving such
lower bounds. It is therefore interesting when this intuition fails to hold.

Shaltiel and Viola [25] noticed such a gap: although we can prove that, e.g., the MOD3
function has constant hardness for AC0[2] circuits [21, 26] (where AC0[2] is AC0 equipped
with parity gates), we still do not have pseudorandom generators for AC0[2]. The trouble
is that known constructions of pseudorandom generators require strongly hard on average
functions [18], and proofs of hardness amplification require the class in question to compute
the majority function, which AC0[2] cannot even approximate [21]. Shaltiel and Viola
therefore highlight the problem of establishing such strong average case hardness against
AC0[2] circuits as a challenge in circuit complexity. Servedio and Viola [23] pointed out
that such strong hardness is not even known for AC0 ◦MOD2, and suggest the problem as
a natural special case. In particular, they conjecture that, for this special case, the Inner
Product function (IP), defined below, is an example of such a function (although it is trivially
computable by AC0[2]).

I Definition 1. IP(x, y) : {0, 1}2n → {0, 1} is the function
∑n
i=1 xiyi (mod 2).

Thus, showing that IP cannot be computed by small AC0 ◦MOD2 circuits is a natural step
towards a better understanding of AC0[2].

On the other hand, a better understanding of the class AC0 ◦MOD2 turns out to be of
interest to practical cryptography as well. Along similar lines, Akavia et al. [1], in the course
of proposing a candidate weak pseudorandom function of minimal complexity (computable
in AC0 ◦MOD2 in this case), made a strong conjecture; namely that every AC0 ◦MOD2
circuit has a quasipolynomially heavy Fourier coefficient. Since IP only has small Fourier
coefficients, this conjecture also entails the same consequence considered by Servedio and
Viola, and simply showing that IP cannot be computed by small AC0 ◦MOD2 circuits is
again a special case of this problem.

Finally, Servedio and Viola [23] note that a special case of Valiant’s matrix rigidity
problem [28] is to exhibit a function that has low correlation with all sparse polynomials.
AC0 ◦MOD2 circuits are in turn well-approximated by such sparse polynomials, so giving
explicit functions that are not correlated with any AC0 ◦MOD2 functions is again a natural
special case; and IP is again the natural candidate for such a function.

Proving lower bounds for AC0◦MOD2 circuits computing IP is challenging since the usual
techniques from the literature do not immediately apply. Specifically, although Razborov’s
technique [21] establishes strong lower bounds against AC0[2], we note that IP does have
small AC0[2] circuits. There is thus no hope in using Razborov’s technique directly to prove
lower bounds for IP. And of course, techniques based on random restrictions are helpless
against the input layer parity gates.

Servedio and Viola noted that it follows from Jackson’s work [8, Fact 8] that depth-3
AC0 ◦MOD2 circuits (i.e., a DNF of parities) cannot approximate IP. Also, Jukna [9] has
shown that such circuits computing IP must have exponential size (a bound recently optimized
by Cohen and Shinkar [4]). And yet, as Servedio and Viola noted, nothing is known about
depth-4 circuits, let alone AC0 ◦MOD2 circuits of arbitrary depth.
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Our results.
In this work, we give the first nontrivial (superlinear) lower bound for IP against (arbitrary
depth) AC0 ◦MOD2. In fact, our result is slightly stronger and applies to the broader class
of bent functions (i.e., functions whose Fourier coefficients are all equal in magnitude, IP
being a special case).

I Theorem 2. If C is an AC0 ◦MOD2 circuit of depth k and size S that computes the IP
function on n variables, then S = Ω(n1+4−k).

The proof of this theorem follows by an adaptation of the results of Chaudhuri and Radhakrish-
nan [3] who showed a similar bound for AC0 circuits; a similar adaptation for AC0[2] circuits
was previously given by Kopparty and Srinivasan [13].

Our main theorem is an Ω̃(n2) AC0 ◦MOD2 lower bound for IP:

I Theorem 3. Any depth-4 AC0 ◦MOD2 circuit computing the IP function on n variables
must have size s = Ω(n2/ log6 n).

An intuitive interpretation of the above results is the following. IP is a means to “generate”
all possible parities on n bits. AC0 ◦MOD2 circuits are merely AC0 circuits that are given
access to an arbitrary but fixed set of parity functions, bounded in number by the size of
the circuit. Our results address the question of how much these few parities can aid the
computation of most remaining parities.

Our technique: a moment-matching bound.
At the heart of this second lower bound is a lemma that may be of independent interest:

I Lemma 4 (Moment-matching bound). Let X and Y be random variables taking values in
{0, 1, 2, . . . , s}. Suppose that the first d moments of X and Y are equal. Then, Pr(Y = 0) ≤
Pr(X = 0) + e−Ω(d/

√
s).

Several other “moment-matching” bounds appear in the literature, and here we briefly
discuss the relationship of our work to these bounds. First, the classical “truncated moments”
problem concerns the conditions for the existence of a probability distribution on a given
set with a given sequence of moments [2, 5]. But, as noted by Rashkodnikova et al. [20],
the solutions generated by these techniques do not necessarily lie on integers, and so the
conditions refer to a different class of random variables. Klivans and Meka [12] likewise
considered bounds on the difference in probability of general events that may be induced by
distributions with d matching moments. Their bounds apply to much more general properties
(than simply the event X = 0) and much more general distributions; as such, in spite of some
similarities in the techniques employed in their work1, they do not obtain bounds in a useful
form for our purposes. Rashkodnikova et al. [20] in turn consider nonnegative, bounded, and
integer-valued random variables as we do, but they consider a different property; namely,
given that the first d moments are proportional (not necessarily identical), they maximize
their ratio.

Interestingly, it turns out that the moment-matching bound we obtain has a close technical
relationship to the approximate inclusion-exclusion bounds obtained by Linial and Nisan [15].2

1 Indeed, although like us, Klivans and Meka related this problem to the existence of some polynomials
via LP duality, for Klivans and Meka, constructing these (sandwiching) polynomials was the problem,
not the solution.

2 We are indebted to Johan Håstad for pointing out to us the similarity in the underlying technique.
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Indeed, the technique we use to prove Lemma 4 is essentially the same as the core technique
underlying Linial and Nisan’s work, and in fact, we can show that our moment-matching
lemma is essentially equivalent to Linial and Nisan’s approximate inclusion-exclusion bounds
(see Appendix C.1 for details). In view of the naturalness of the statement of our moment-
matching bound, we believe that this lemma may be of interest, even if one is familiar with
the approximate inclusion-exclusion bounds.

1.1 Overview of the depth-4 lower bound
Our argument consists of two main steps: (1) We show that any depth-4 AC0 ◦ MOD2
circuit (without loss of generality, with an AND top gate) of size s ≤ n2 computing the Inner
Product function must have a one-sided approximation by a DNF of parities in which the
terms are all small: It is correct when it outputs 0, and the circuit outputs zero on at least a
1/n2 fraction of inputs. (2) We then show that such one-sided approximators for the Inner
Product function can only output 0 with small probability, which can be made smaller than
1/n2 for some s = O(n2/poly logn).

The first part is relatively straightforward. We let a candidate circuit for the inner
product function of size s ≤ n2 be given. We first obtain a one-sided approximation to our
circuit by invoking the Discriminator Lemma of Hajnal et al. [6] to obtain a depth-3 circuit
(eliminating the top AND layer) that is correct whenever it reports 0, and reports 0 on a
large (≥ 1/n2) fraction of the inputs. We then reduce the fan-in of the second (from bottom)
layer of AND gates by trimming the AND gates with large fan-in at a slight cost in the
approximation error (asymptotically smaller than 1/n2).

Towards the second part of our argument, we consider the degree of an arbitrary parity in
the {±1}-representation in terms of the original variables as well as the bottom layer parities.
That is, the degree of a parity χ is now defined as the minimum number of variables and/or
bottom layer parities that need to be added together (over F2) to obtain χ: e.g., a single
parity gate (new variable) has degree 1, and a parity of k new variables (parity gates or
old variables) has degree ≤ k. Given the size of the circuit s, we obtain that w.h.p. over
the setting of the input y variables, the inner product function IP(x, y) is a parity in the x
variables that remains of high degree (at least Ω(n/ log s)) over these new variables.

We show that, for a 1− o(1) fraction of fixings of the y variables, the probability that our
circuit outputs 0 when IP(x, y) = 0 is small as follows. We apply the above-mentioned moment-
matching bound (Lemma 12) to the random variable N(x) (over a random x) that counts the
number of the AND gates in the depth-3 approximator obtained by the Discriminator Lemma
that output 1. We can then show that the first m = Ω̃(n) moments of (N(x) | IP(x, y) = 0)
and (N(x) | IP(x, y) = 1) are identical and Prx(N(x) = 0 | IP(x, y) = 1) = 0 since N(x) = 0
precisely when the OR gate at the output of the depth-3 one-sided approximator outputs 0, in
which case the circuit is correct. Using this information in a linear-programming based proof,
we show that Prx(N(x) = 0 | IP(x, y) = 0) . e−Ω̃(m/

√
s). For our m, if s ≤ n2/ poly logn,

the upper bound becomes smaller than 1/n2, completing the second part and finishing the
proof.

To see that the low-degree moments match, we note that N(x) is represented by a low-
degree polynomial: In the {0, 1}-representation, it is simply the summation of monomials of
degree O(logn) corresponding to the second-level AND gates (recall that the degree remains
the same in the {±1}-representation). In the {±1}-representation, however, it is then clear
that the parity in x that we obtain from our setting of the y variables in IP(x, y) is (w.h.p.
over y) uncorrelated with N(x). In other words, Ex(N(x) | IP(x, y) = 0) = Ex(N(x) |
IP(x, y) = 1). This argument can be seen to hold for larger moments as well.
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We prove the moment-matching bound by writing a linear program for the probability
distribution satisfying the given moment constraints over {0, . . . , s} that maximizes the
probability of obtaining 0. We bound the value of this LP by giving an explicit dual-feasible
solution; It turns out that the dual can be rewritten as maximizing the lower bound on
the values a bounded degree polynomial attains at the integer points in [0, s], given that it
takes value 0 at the origin and is also upper bounded by 1 at these integer points. This is
quite similar to the conditions for approximators for the OR function sought by Nisan and
Szegedy [17], and our solution follows theirs, using Chebyshev polynomials to construct the
desired (essentially optimal, cf. Paturi [19]) polynomial.

An alternative proof.
There is also an alternative way of completing the proof of our lower bound that uses
approximate inclusion-exclusion directly. We believe that the main proof we describe here,
using moment-matching, is more natural. For completeness, a sketch of this alternative proof
appears in Appendix C.2.

1.2 Preliminaries
Most of our notation is standard, but for reference we include an overview in Appendix A.
We also include a brief review of discrete Fourier analysis in Appendix A.2.

A linear threshold gate T a
k (x1, . . . , xt) of fan-in t outputs 1 if and only if

∑t
i=1 aixi ≥ k,

where a = (a1, . . . , at) is vector of weights. The Discriminator Lemma of Hajnal et al. is a
powerful tool for proving lower bounds of threshold circuits.

I Lemma 5 (Discriminator lemma, Lemma 3.3 in [6]). Let C = T a
k (C1, . . . , Cm) be a circuit

on n inputs with a threshold gate at the top level, and write a =
∑m
i=1 |ai|. Let A,B ⊆ {0, 1}n

be any two disjoint sets of inputs such that the circuit C accepts A and rejects B. Then there
exists a subcircuit Ci, i ∈ [m], such that |PrA(Ci(x) = 1)− PrB(Ci(x) = 1)| ≥ 1/a, where
PrA(Ci(x)) (resp., PrB(Ci(x))) denotes the uniform probability over the set A (resp., B).

2 Lower bound for depth-4 circuit

In this section we will show an Ω̃(n2) lower bound for any depth-4 AC0 ◦MOD2 circuit that
computes IP(x, y). Note that all circuits here are allowed to have negations below the XOR
gates; these negations are not counted in the depth of the circuit.

2.1 Depth-3 discriminator
Let C be any depth-4 AC0 ◦MOD2 circuit that computes IP(x, y). First, without loss of
generality, we may assume the top layer gate of C is an AND gate; the case that top layer
gate is an OR gate follows a similar argument3. Second, suppose C = AND(C1, . . . , Cm),
where each subcircuit Ci is a parity-DNF circuit; then because C(x, y) = IP(x, y) for every
input, each subcircuit Ci must compute IP with one-sided error only. Specifically, for every
input (x, y) with IP(x, y) = 1 and every i, Ci(x, y) = 1.

3 One way to see this is to notice that our proof also shows the same lower bound for the negation of the
Inner Product function (since negating only incurs an affine shift that our methods are not sensitive to).
Thus it suffices to note that when the top gate is an OR one can just negate the layers and get a circuit
in which the top gate is AND that computes the negation of the Inner Product.

CVIT 2016
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We invoke a consequence of the Discriminator Lemma of Hajnal et al. [6].
I Claim 6 (Consequence of Lemma 5). There is a subcircuit Ci, i ∈ [m], such that
Pr(x,y) : IP(x,y)=1(Ci(x, y) = 1) = 1, and Pr(x,y) : IP(x,y)=0(Ci(x, y) = 1) ≤ 1− 1/m.
We call such a depth-3 AC0 ◦MOD2 circuit Ci a one-sided 1/m-discriminator for IP. Our
main lemma is an upper bound on the discriminator parameter 1/m of such discriminators
in terms of its size.

I Lemma 7 (Main). Suppose that a depth-3 AC0 ◦MOD2 circuit of size s is a one-sided
ε-discriminator for IP. Then ε satisfies

ε ≤ 4 exp
(
−

√
n2

128s log2 n log2 s

)
+ 4s
n4 + 2−n/2.

The proof of Lemma 7 is discussed in Section 2.3. Assuming Lemma 7, the proof of
Theorem 3 is straightforward. If m ≥ n2, then we are done already. Suppose otherwise,
so ε ≥ 1/n2. Then by Lemma 7, the size of discriminator subcircuit Ci is of size at least
s = Ω( n2

log6 n
) = Ω̃(n2).

2.2 Random y-restrictions
Let C ′ be a size-s depth-3 AC0 ◦MOD2 circuit which is a one-sided ε-discriminator for IP. So
Pr(x,y) : IP(x,y)=0(C ′(x, y) = 0) ≥ ε, and C ′ = OR(f1, f2, . . . , fs′), where each fi is an AND
of parities and s′ < s. Without loss of generality, we can assume that none of these AND
gates are constant (i.e., always 0 or 1).

Reducing the fan-in of AND gates.
Define the codimension of fi (each of which is an AND of parities) to be the codimension of
the subspace corresponding to the coset of inputs on which fi evaluates to 1.

For example, if f1 = AND(x1 + x2, x1 + x3,¬(x2 + x3)), then x1 + x2 and x1 + x3 both
evaluating to 1 necessarily implies that ¬(x2 +x3) evaluates to 1. Hence, the set of inputs for
which f1(x) = 1 is the affine subspace specified by {x1 + x2 = 1∧ x2 + x3 = 1}; consequently,
the codimension of f1 is 2.

The codimension of fi measures the “effective” fan-in of the AND gate in C ′. It is
straightforward that without loss of generality one can assume the co-dimension of each
AND gate to be equal to its fan-in (see Appendix B.1). From now on, we assume that all
redundant parity inputs have already been removed and each AND gate in C ′ has its fan-in
equal to its codimension. Our next step is trim those AND gates of C ′ whose fan-in is large.

Call an AND gate in C ′ “bad” if its fan-in is larger than 4 logn. We reduce C ′ to a circuit
C ′′ by trimming all “bad” AND gates to an arbitrary set of 4 logn inputs in their fan-in. Note
that each trimmed AND gate may cause an error, only from 0 to 1, and only when all its (non-
trimmed) inputs evaluate to 1 (an event that happens with probability at most 2−4 logn, since
the inputs of each gate are uniform and independent). Define τ = Prx,y(C ′(x, y) 6= C ′′(x, y)).
By the union bound, τ ≤ s2−4 logn = s/n4. Further, if C ′(x, y) 6= C ′′(x, y) then we must
have C ′(x, y) = 0 and C ′′(x, y) = 1. In other words, if ε′ := Pr(x,y) : IP(x,y)=0(C ′′(x, y) = 0),
then ε′ ≥ ε − τ , and moreover, if C ′ approximates IP with a one-sided error (i.e., C ′ = 1
whenever IP = 1), then so does C ′′.

I Definition 8. For a function F (x, y) (resp., a circuit C(x, y)) that maps {0, 1}n × {0, 1}n
to {0, 1}, a y-restriction ρ ∈ {0, 1}n is an assignment of all the y variables in the input
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according to ρ. Denote the resulting function F (resp., circuit C) after applying restriction ρ
by F |ρ (resp., C|ρ).

A simple fact exploited in the proof is that, for any y-restriction ρ, IP|ρ is a parity over
the x variables, which we denote by `ρ. Note that `ρ(x) =

∑
i:ρi=1 xi mod 2. We next argue

that for any fixed depth-3 AC0 ◦MOD2 circuit C ′′, the parity function `ρ resulting from a
random y-restriction ρ is of “high degree” with respect to the parity inputs of C ′′, and thus
“hard” for the circuit.

Fix an arbitrary depth-3 AC0 ◦ MOD2 circuit C ′′, of which the fan-in of each AND
gates is at most 4 logn. Let the parity inputs for C ′′ be `(a1,Sx1 ,S

y
1 ), . . . , `(as′ ,Sxs′ ,S

y

s′
), where

ai ∈ {0, 1}, Sxi , S
y
i ⊆ [n], `Sx

i
,Sy
i
(x, y) = ai +

∑
j∈Sx

i
xj +

∑
j∈Sy

i
yj , and s′ < s.

Observe that after applying a y-restriction ρ to C ′′, the inputs to C ′′|ρ become the x-part
of the original parities or their negations, namely `(ai,Sxi ,Syi )|ρ = a′i +

∑
j∈Sx

i
xj and a′i = ai

or a′i = 1 − ai. Since there is a natural one-to-one correspondence between subsets of [n]
and vectors in Fn2 , we may use a set of vectors S ⊆ Fn2 to identify the set of parities (or
their negations), namely {Sxi }i∈[s′], that are fed into C ′′|ρ. A key point is that the subset S
depends only on the circuit C ′′, and is essentially independent of the choice of y-restriction
ρ. Note also that |S| ≤ s′ < s. In the following, we will slightly abuse notation and use a
parity and the subset of [n] corresponding to that parity interchangeably.

IP results in high degree parity under random restriction.
Following standard additive combinatorial notation, for a subset S ⊆ Fn2 and a positive integer
k, let kS = {x1 + · · ·+ xk : x1, . . . , xk ∈ S}. Clearly we have |S ∪ 2S ∪ · · · ∪ kS| ≤ (|S|+ 1)k.

I Definition 9. For any S ⊆ Fn2 and z ∈ Fn2 , the S-degree of z is the smallest integer d such
that z ∈ dS, or ∞ if no such d exists. Further, the S-degree of a parity function 〈α, x〉 for
α ∈ Fn2 is the S-degree of α.

Our next claim shows that for any fixed size-s depth-3 AC0 ◦MOD2 circuit C ′′, after
applying a random y-restriction, then almost surely, the resulting parity function `ρ is of
high degree with respect to the parity inputs of C ′′|ρ.
I Claim 10. Let S ⊆ Fn2 be the set of input parities (or their negations) of C ′′|ρ. Then with
probability at least 1− 2−n/2 over the choice of ρ, `ρ has S-degree larger than n/(2 log s).

Proof. Set k = n/(2 log s). We have |S∪2S∪· · ·∪kS| ≤ (|S|+1)k ≤ sk = sn/(2 log s) = 2n/2, so
the probability that the S-degree of `ρ being at most k is no more than 2n/2/2n = 2−n/2. J

We will call a y-restriction ρ good (for circuit C ′′) if the S-degree of `ρ is larger than
n/(2 log s) and bad otherwise. Therefore a random ρ is bad with probability at most 2−n/2.
Let Nρ : {0, 1}n → N be the function that counts the number of AND gates of C ′′|ρ that are
1.

I Lemma 11. Let S ⊆ Fn2 be the set of input parities (or their negations) of C ′′|ρ. Suppose
`ρ has S-degree larger than k and each AND gate in C ′′|ρ has fan-in at most w, then N i

ρ

is uncorrelated with `ρ for i = 1, 2, . . . , k/w. In other words, Ex(N i
ρ(x) | `ρ(x) = 0) =

Ex(N i
ρ(x) | `ρ(x) = 1) for i = 1, 2, . . . , k/w.

The above lemma is proved in Appendix B.2. Since each of the AND gates in C ′′ has
fan-in at most 4 logn and the S-degree of `ρ is larger than n/(2 log s) for every good ρ,
Lemma 11 implies that N i

ρ is uncorrelated with `ρ for i up to d := n/(8 logn log s) for every
good y-restriction.

CVIT 2016
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2.3 Linear programming and feasible solutions based on Chebyshev
polynomials (Proof of Lemma 7)

Let Xρ (resp. Yρ) be the (conditional) random variable of Nρ(x) | (`ρ(x) = 1) (resp.,
Nρ(x) | (`ρ(x) = 0)). Our key observation is that, by Lemma 11, these two random
variables both take values in {0, 1, . . . , s′} and their moments match up to n/8 logn log s. So
intuitively, if s′ is not too large, these two random variables should have close to identical
distributions; in particular, we should have Pr(Xρ = 0) ≈ Pr(Yρ = 0). Since C ′ (and
thus, C ′′) computes IP with only one-sided error, we have that for every y-restriction ρ,
Pr(C ′′|ρ(x) = 1 | `ρ(x) = 1) = 1 and consequently Pr(Xρ = 0) = 0. Combining this with the
consequence of moment-matching condition between Xρ and Yρ implies that Pr(Yρ = 0) ≈ 0
for every good ρ.

Fix a good y-restriction ρ. The following key lemma provides the desired upper bound
on Pr(Yρ = 0) = Prx(C ′′|ρ(x) = 0 | `ρ(x) = 0). The lemma allows an additional parameter
ξρ which in our application is set to zero (since we have Prx(C ′′|ρ(x) = 0 | `ρ(x) = 1) = 0).
However, since the lemma applies to general random variables with matching moments and
may be of independent interest, it is stated in the more general form.

I Lemma 12. Let Xρ and Yρ be random variables supported on {0, 1, . . . , s′} such that
(i) E(Xi

ρ) = E(Y iρ ) for i = 1, . . . , d; and (ii) Pr(Xρ = 0) = ξρ. Then Pr(Yρ = 0) ≤
ξρ + 4(1− ξρ)e−d/

√
2s′ .

Proof. We set up a linear program to maximize Pr(Yρ = 0) over the choices of random
variables Xρ and Yρ. The variables in the LP are xi and yi where xi = Pr(Xρ = i) and
yi = Pr(Yρ = i). Aside from nonnegativity and an upper bound constraint for x0, we have
d+ 2 equality constraints; 2 of them to force Xρ and Yρ to have probability distributions, and
the other d for the moment matching condition. The linear program and the corresponding
dual are listed in Fig. 1. In order to upper bound the value of the primal program (i.e.,
Pr(Yρ = 0)) and prove Lemma 12, it suffices to find a feasible solution to the corresponding
dual program. We show that by choosing the polynomial p in the dual to be a Chebyshev
polynomial (appropriately shifted and scaled), an essentially optimal bound on the primal
value can be found. Full details are included in Appendix B.3. J

Considering the overwhelming fraction 1− 2−n/2 of good ρ’s and averaging on ρ, using
Lemma 12 above we get that Prx,y(C ′′(x, y) = 0 | IP(x, y) = 0) ≈ 0. On the other hand,
since C ′ is an ε-discriminator for IP, then C ′′ is an ε′-discriminator for IP for some ε′ ≥ ε− τ
(where we recall τ = Prx,y(C ′(x, y) 6= C ′′(x, y))). Therefore ε′ must be small when the circuit
size s of C ′ is small, and thus we obtain the desired upper bound on ε. We include the
remaining details of the proof of Lemma 7 (as sketched above) in Appendix B.4.

2.4 Limitations of our approach

We remark that the Ω̃(n2) lower bound is optimal (up to a polylogarithmic factor) for our
current approach. This follows from a theorem of Paturi [19], which states that if p(x)
is a degree d polynomial such that 0 ≤ p(i) ≤ 1 for i = 0, 1, . . . , s and |p(1) − p(0)| ≥ c

for some constant c, then d = Ω(
√
s), or equivalently s = O(d2). Since in our setting

d = Θ(n/ logn log s), the best lower bound one can show in the current framework is Õ(n2).
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Max y0 (primal LP)

s.t.
∑s′

i=0 i
jxi −

∑s′

i=0 i
jyi = 0, j = 1, . . . , d∑s′

i=0 xi = 1∑s′

i=0 yi = 1
x0 = ξρ

xi, yi ≥ 0, i = 0, . . . , s′

Min 1 − (1 − ξρ)z (dual LP)
s.t. p is a polynomial of degree at most d

p(0) = 0
z ≤ p(i) ≤ 1 i = 1, . . . , s′

Figure 1 Primal LP for finding maximum Pr(Y = 0) (top), and the final dual LP for finding
maximum Pr(Y = 0) (bottom).

3 Superlinear Lower Bound for General Circuits

In this section we prove the following superlinear lower bound for AC0 ◦MOD2 circuits of
arbitrary depth. Throughout this section we find it more convenient to use (x1, . . . , xn) as the
entire input to IP rather than the two-input notation (x1, . . . , xn, y1, . . . , yn) used previously.
We remark that the results of this section hold for a more general class of functions than IP,
namely bent functions4. We state the results here for IP, and prove them for bent functions
in the appendix.

I Theorem 13. If C is an AC0 ◦ MOD2 circuit of depth k and size S that computes
IP: {0, 1}n → {0, 1}, then S = Ω(n1+4−k).

Deterministic restrictions.
The high level idea of the proof is to adapt the technique of “deterministic restrictions” [3]
to AC0 ◦MOD2 circuits. In contrast to random restrictions which simplify circuits probabil-
istically, deterministic restrictions aim to show that, if the circuit size is small, then one can
find a (small) set of input variables deterministically based on the structure of the circuit,
such that fixing them forces the circuit to output a constant. This implies that small circuits
fail to compute functions that cannot be made constant without setting a large number of
input variables. The only twist when applying this framework to AC0 ◦MOD2 circuits is,
instead of fixing independent input variables, one now fixes linear functions which in general
are no longer independent. We use a folklore result (called the Folk Lemma below) that IP
can not be made constant by imposing less than n/2 linear constraints on the inputs; i.e., IP
is not constant on a linear subspace of dimension more than n/2 (see Appendix D.1).

4 A Boolean function is bent if all its Fourier coefficients are equal in magnitude. The Inner Product
function (IP) is a special case (see Appendix A.2). In fact, our result holds for any function whose
Fourier coefficients are all exponentially small in magnitude.
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The main ingredient of the proof is the following lemma, which is the exact analogue of a
result of Chaudhuri and Radhakrishnan [3] for AC0 circuits.

I Lemma 14. Let C(x) be an AC0 ◦MOD2 circuit of depth k and size S, with variable inputs
x1, . . . , xn and bottom parity gates p1(x), . . . , pr(x). Then there exists a set of t linearly
independent linear restrictions, t < 5S1−4−k , such that imposing them on x1, . . . , xn makes
C(x) constant (on the restricted space).

Proof. We will adapt the argument of [3]. The algorithm of [3] constructs a partial assignment
to the inputs of an AC0 circuits so that the output is fixed and the number of fixed variables
is small. In particular, it fixes the values of gates at each level (by fixing the bottom variables
and propagating the values up the circuit), starting at level 0 (the input level), and proceeding
successively up to the output gate at level k. The specific way of fixing these gates ensures
that after level i is fixed, all gates at levels j ≤ i have both small fan-in and small fan-out
(fan-ins and fan-outs are defined with respect to the current partial restriction and gates that
are not fixed yet). At the end of such fixing, a so-called “regular” circuit is obtained. Then
it is straightforward to show that one can fix an additional small number of variables of such
regular circuit to make it output a constant. Our argument proceeds in an almost identical
way. However, we fix parities in addition to input variables, and once a new parity gate is
fixed, we need to fix the free parity gates which linearly depend on the fixed parity gates.
This can only possibly reduce the number of parity gates needed to be fixed in the process,
thus the original proof works in the setting of AC0 ◦MOD2 circuits as well. We defer the
details to Appendix D.2. J

Now we are ready to prove the main theorem of this section.

Proof of Theorem 13. Suppose C has size S < 1
5n

1+4−k (hence, it has at most that many
parity gates) and computes the IP function. By Lemma 14, there exists a set of linearly
independent linear restrictions of size at most 5S1−4−k < (n1+4−k)1−4−k = n1−16−k < n/2
(for large enough n), under which C becomes a constant function. But by the Folk Lemma,
we must impose at least n/2 linear restrictions to make IP a constant; a contradiction. J
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A Notation and Additional Preliminaries

A.1 Notation
All logarithms in this paper are to the base 2. Let n ≥ 1 be a natural number. We use [n] to
denote the set {1, . . . , n}. We use F2 for the field with 2 elements {0, 1}, where addition and
multiplication are performed modulo 2. We view elements in Fn2 as n-bit binary strings – that
is elements of {0, 1}n – alternatively. If x and y are two n-bit strings, then x+ y (or x− y)
denotes bitwise addition (i.e. XOR) of x and y. We view Fn2 as a vector space equipped with

CVIT 2016
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an inner product 〈x, y〉, which we take to be the standard dot product: 〈x, y〉 =
∑n
i=1 xiyi,

where all operations are performed in F2.
Often times, it is convenient to switch the range of Boolean functions between {0, 1} and

{−1, 1}. We use f± to denote the {−1, 1}-valued Boolean function corresponding to f . They
are related by f± = (−1)f = 1− 2f and f = (1− f±)/2.

For every α ∈ Fn2 , one can define a linear function (or parity function) mapping Fn2 to
{0, 1} as `α(x) = 〈α, x〉. Let χα = (−1)`α , which are commonly known as characters.

Characters play a central role in Fourier analysis of Boolean functions. Background on
Fourier analysis is reviewed next.

A.2 Background on Fourier analysis
For functions f, g : Fn2 → C the inner product is defined as 〈f, g〉 := Ex∈Fn2 (f(x)g(x)). For
α = (α1, . . . , αn) ∈ Fn2 , the corresponding character function χα is defined as χα(x1, . . . , xn) =∏
i : αi=1(−1)xi . For α, β ∈ Fn2 , the inner product between χα and χβ is 1 if α = β, and 0

otherwise. Therefore the characters form an orthonormal basis for complex-valued functions
over Fn2 , and we can expand any f defined on Fn2 using {χα}α∈Fn2 as a basis.

I Definition 15 (Fourier Transform). Let f : Fn2 → C. The Fourier transform f̂ : Fn2 → C of
f is defined to be f̂(α) = Ex(f(x)χα(x)). The quantity f̂(α) is called the Fourier coefficient
of f at α.

The Fourier inversion formula is given by f(x) =
∑
α∈Fn2

f̂(α)χα(x), and the Parseval’s
identity is

∑
α∈Fn2

f̂(α)2 = Ex(f(x)2).
A Boolean function f : Fn2 → {0, 1} is called a bent function if all the Fourier coefficients

of f± := (−1)f have the same absolute value. That is, |f̂±(α)| = 2−n/2 for every α ∈ Fn2 . It
is well known that the Inner Product function IP is a bent function.

B Omitted details of Section 2

B.1 Fixing codimensions
The following claim shows that we can ensure that each AND gate at the bottom layer has
fan-in equal to its codimension.

I Claim 16. For any AND gate in C ′, there is an equivalent AND of a subset of its inputs
with fan-in equal to its codimension.

Proof. Consider the input wires of the AND gate in any order. We say that the ith input is
redundant if, given that the first i−1 input wires are 1, then in the subspace the ith input wire
must also be 1. Notice that eliminating the redundant wires yields an equivalent function.
To see that the fan-in of this new gate is equal to the codimension of the original AND gate,
consider the dimension of the coset of inputs that make the first i inputs 1. Observe that
each with non-redundant input, the dimension decreases by one; so, the codimension of the
original gate equals the number of non-redundant inputs, which is precisely the fan-in of this
new AND gate. J

B.2 Proof of Lemma 11
For convenience, we switch to the {−1, 1} representation of Boolean values for parities,
i.e. χ(x) = (−1)`(x). Let χ1, . . . , χs′ be the input parities of C ′′|ρ, and let f ′1, f ′2, . . . , f ′t′
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(each still taking value in {0, 1}) be the functions computed by the AND gates in C ′′|ρ.
Then Nρ(x) = f ′1(x) + f ′2(x) + · · · + f ′t′(x). Note that since each f ′j(x) is the AND of
at most w parities from {χ1, . . . , χs′}, f ′j(x) can be expressed as a polynomial of degree
at most w with χ1, . . . , χs′ as variables (indeed, if f ′1(x) = AND(χ1(x), . . . , χw(x)), then
f ′1 = ( 1−χ1

2 ) · · · ( 1−χw
2 )). Consequently, N i

ρ is a polynomial of degree at most i · w in
χ1, . . . , χs′ . Now because `ρ is of S-degree larger than k ≥ i · w for i = 1, 2, . . . , k/w, we
have that `ρ is not in the support of the polynomial representation of N i

ρ. Finally, by the
orthogonality of parities, letting χρ(x) := (−1)`ρ(x), we have

0 = 〈N i
ρ, `ρ〉 = Ex(N i

ρ(x) · `ρ(x)) = 1
2
(
Ex(N i

ρ(x) | χρ(x) = 0)−Ex(N i
ρ(x) | χρ(x) = 1)

)
.

B.3 Omitted details of proof of Lemma 12
Denote by Pρ the value of the primal LP in Fig. 1. The dual linear program is

minimize zd+1 + zd+2 + ξρzd+3

such that zd+1 + zd+3 ≥ 0
zd+2 ≥ 1
(
∑d

j=1 i
jzj) + zd+1 ≥ 0 i = 1, . . . , s′

(
∑d

j=1 −ijzj) + zd+2 ≥ 0 i = 1, . . . , s′

We can interpret the dual as a problem involving polynomials. The feasible solutions
correspond to coefficients of degree-d polynomials p(x) =

∑d
j=1 zjx

j with p(0) = 0. By
duality, the objective value of the dual is nonnegative for any feasible solution. Thus, by
scaling, we can assume zd+2 = 1. Further, since zd+3 only appears in the first constraint in
this minimization problem, we can always take zd+3 = −zd+1.

Rearranging the last two constraints of this problem yields that the values {p(1), p(2), . . . , p(s′)}
must all lie in the interval [−zd+1, zd+2]. Setting z = −zd+1, the dual problem can be reph-
rased as the final Dual LP showed in Fig. 1.

Denote by Dρ the value of this dual LP. By the Strong Duality Theorem, Pρ = Dρ, and
therefore if V (p) is the value of any feasible solution corresponding to a polynomial p to the
dual LP, we have

Pr(Yρ = 0) ≤ Pρ = Dρ ≤ V (p).

The above modified problem about polynomials is strikingly similar to the problem of
approximating OR functions by low-degree polynomials, for which Nisan and Szegedy gave
an optimal solution based on Chebyshev polynomials [17]. Recall that Chebyshev polynomial
(of the first kind) Tk(x) is a degree k polynomial defined by Tk(x) = cos(k arccos(x)), or
more explicitly

Tk(x) = 1
2

[(
x+

√
x2 − 1

)k
+
(
x−

√
x2 − 1

)k]
.

It is well-known that −1 ≤ Tk(x) ≤ 1 for all x ∈ [−1, 1] and Tk(x) > 1 when x > 1. For a
detailed treatment of Chebyshev polynomials see e.g. [22].

We now construct a dual feasible polynomial p based on Chebyshev polynomials. Define

q(x) = 1−
Td( s

′−x
s′−1 )

Td( s′

s′−1 )
,
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and let

p(x) = q(x)
maxi∈{1,...,s′} q(i)

Clearly p(x) is a degree d polynomial, p(0) = 0 and p(i) ≤ 1 for i = 1, . . . , s′, hence a feasible
solution to the dual LP.
I Claim 17. The value of p(x) with respect to the dual LP satisfies that D(p) ≤ ξρ+ 2(1−ξρ)

Td(1+ 1
s′ )

.

Proof. Since −1 ≤ Td(w) ≤ 1 for all −1 ≤ w ≤ 1, then for i = 1, . . . , s′,

p(i) = q(x)
maxi∈{1,...,s′} q(i)

=
Td(1 + 1

s′−1 )− Td( s
′−i
s′−1 )

Td(1 + 1
s′−1 )−minj∈[s′] Td( s

′−j
s′−1 )

≥
Td(1 + 1

s′−1 )− 1
Td(1 + 1

s′−1 ) + 1
=

1− 1/Td(1 + 1
s′−1 )

1 + 1/Td(1 + 1
s′−1 )

≥ 1− 2
Td(1 + 1

s′−1 )
≥ 1− 2

Td(1 + 1
s′ )
.

Therefore the value z in the objective function of dual LP is at least z ≥ 1− 2
Td(1+ 1

s′ )
and

the claim follows. J

We will need the following two inequalities bounding Tk(x)’s growth when x ≥ 1.
I Claim 18. For any nonnegative integer k, we have5

1. Tk(1 + µ) ≥ 1
2e

(
√

2µ+µ2)k/2 for all real number 0 ≤ µ ≤ 1.
2. Tk(1 + µ) ≤ e2(

√
2µ+µ2)k for all µ ≥ 0.

Proof. For the first part, using that 1 + x ≥ ex/2 for 0 ≤ x ≤ 2, we obtain

Tk(1 + µ) ≥ 1
2(1 + µ+

√
2µ+ µ2)k

≥ 1
2(1 +

√
2µ+ µ2)k

≥ 1
2e

(
√

2µ+µ2)k/2,

for all 0 ≤ µ ≤ 1.
For the second part, by the standard inequality (1 + t/n)n ≤ et for all nonnegative t and

n,

Tk(1 + µ) ≤ (1 + µ+
√

2µ+ µ2)k

≤ (1 + 2
√

2µ+ µ2)k ≤ e2(
√

2µ+µ2)k.

J

Finally, by setting µ = 1/s′ in the first inequality of Claim 18, we have Td(1 + 1/s′) ≥
1
2e

(
√

2/s′+1/s′2)d/2 ≥ 1
2e
√
d2/2s′ . Combining this with Claim 17, we get

Pr(Yρ = 0) ≤ ξρ + 4(1− ξρ)e−d/
√

2s′

which completes the proof of Lemma 12.

5 The second inequality also appeared in [19].
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B.4 Omitted details of the proof of Lemma 7
Recall that Xρ (resp. Yρ) is the (conditional) random variable of Nρ(x) | (`ρ(x) = 1) (resp.,
Nρ(x) | (`ρ(x) = 0)), where Nρ(x) counts the number of AND gates in C ′′|ρ that evaluate to
1. Since C ′′|ρ provides a one-sided approximation of the function `ρ, we have that

ξρ := Pr
x

(Nρ(x) = 0 | `ρ(x) = 1) = 0.

Taking d = n
8 logn log s and s′ < s into Proposition 12, we have that for any good

y-restriction ρ,

Pr
x

(C ′′|ρ(x) = 0 | `ρ(x) = 0) = Pr(Yρ = 0)

≤ ξρ + 4(1− ξρ) exp(−d/2
√
s)

= 4 exp(−d/2
√
s). (1)

Taking into account bad ρ’s, which happens with probability at most 2−n/2 (according
to Claim 10), the discriminator parameter ε′ for C ′′(x, y) can now be upper bounded as

ε′ = Pr
x,ρ

(C ′′|ρ(x) = 0 | `ρ(x) = 0)

= Eρ(Pr
x

(C ′′|ρ(x) = 0 | `ρ(x) = 0)) = Eρ(Yρ)

= Egood ρ(Yρ) Pr(ρ is good) + Ebad ρ(Yρ) Pr(ρ is bad)

≤ 4 exp(−d/2
√
s) + 2−n/2.

Finally, since ε′ ≥ ε − τ , where we recall that τ = Prx,y(C ′(x, y) 6= C ′′(x, y)) ≤ s/n4, the
proof of Lemma 7 is complete.

C Comparison to Linial-Nisan

In this appendix, we describe two connections between our work and the work by Linial
and Nisan on approximate inclusion exclusion. First, we show that the bounds are actually
equivalent: each bound can be recovered from the other. Second, we show that approximate
inclusion-exclusion can be used in place of moment matching in the proof of our lower bound
for depth-4 circuits. But, we stress that we believe that moment-matching is more natural
in many contexts (including the proof of our lower bound), and is therefore of independent
interest. Indeed, one may view our moment-matching bounds as giving a new interpretation
of approximate inclusion-exclusion.

C.1 Equivalence of moment matching and approximate
inclusion-exclusion

Here, we show that our moment-matching technique can be recovered from Theorem 1 of [15].

I Theorem 19. Let d and s′ be integers and let A1, A2, . . . , As′ and B1, B2, . . . , Bs′ be two
collections of arbitrary events in two probability spaces, where Pr(Bi) > 0 for at least one i.
Further, assume that

Pr(
⋂
i∈S

Ai) = Pr(
⋂
i∈S

Bi)
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for every subset S ⊂ [s′] with |S| ≤ d. Then for d ≥ Ω(
√
s′), we have Pr(

⋃s′
i=1Ai)/Pr(

⋃s′
i=1Bi) =

1 +O(exp(−2d/
√
s′).

We show that our moment matching bound follows from the above theorem.
Proof of Lemma 12 from Theorem 19: Let X and Y be random variables supported on
{0, 1, 2, . . . , s′} such that E(Xj) = E(Y j) for 1 ≤ j ≤ d. For 0 ≤ i ≤ s′, let pi := Pr(X = i)
and qi := Pr(Y = i). Define two distributions P and Q over {0, 1}s′ such that

P (z) =
p|z|(
s′

|z|
) , and Q(z) =

q|z|(
s′

|z|
) ,

where |z| is the Hamming weight of z.
Finally, for 1 ≤ i ≤ s′, define the event Ai(z) (resp. Bi(z)) to be the event that the ith

bit of a random string z drawn from {0, 1}s′ according to distribution P (resp. Q) is 1.
Now the moment matching condition implies that

s′∑
w=1

pww
j =

s′∑
w=1

qww
j ,

for 1 ≤ j ≤ d; or if we let rw := pw − qw, then

s′∑
w=1

rww
j = 0,

for all 1 ≤ j ≤ d. Viewing as vectors in the univariate polynomial vector space, the two
sets of polynomials {1, w, w2, . . . , wd} and the linear span of polynomials {

(
w
0
)
,
(
w
1
)
, . . . ,

(
w
d

)
}

both form a basis for the linear space of polynomials of degree at most d. In particular, each
of degree-j polynomial

(
w
j

)
can be expressed as a linear combination of {1, w, w2, . . . , wj}

for every 1 ≤ j ≤ d, and therefore

s′∑
w=1

rw

(
w

j

)
= 0, or equivalently,

s′∑
w=1

pw

(
w

j

)
=

s′∑
w=1

qw

(
w

j

)
,

for every 1 ≤ j ≤ d.

I Claim 20.
∑s′

w=1 pw
(
w
j

)
=
∑
S:|S|=j Pr

(⋂
i∈S Ai

)
=
(
s′

j

)
Pr
(⋂

i∈[j]Ai

)
.

Notice, it follows from Claim 20 that for all S ⊂ [s′] with |S| ≤ d, Pr
(⋂

i∈S Ai
)

=
Pr
(⋂

i∈S Bi
)
.

Proof of Claim 20: Notice, the first quantity is

s′∑
w=1

(
w

j

)
Pr
z

(|z| = w) = Ez

 ∑
S:|S|=j

I

[⋂
i∈S

Ai(z)
] =

∑
S:|S|=j

Ez

(
I

[⋂
i∈S

Ai(z)
])

by linearity of expectation. The first equality is now immediate. The second equality is
because the Ai’s are symmetric events; given that exactly j of the Ai’s happen, all collections
of j events that happened are equally likely. J

We can now invoke Theorem 19 to find that

Pr(
s′⋃
i=1

Ai)/Pr(
s′⋃
i=1

Bi) = 1 +O(exp(−2d/
√
s′)),
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where, since by construction Pr(
⋃s′
i=1Ai) = 1−Pr(X = 0) and Pr(

⋃s′
i=1Bi) = 1−Pr(Y = 0),

we find that since
1

1 +O(exp(−2d/
√
s′))
≥ 1−O(exp(−2d/

√
s′))

(1−O(exp(−2d/
√
s′)))(1− Pr(X = 0)) ≤ 1− Pr(Y = 0)

Pr(Y = 0) ≤ Pr(X = 0) + (1− Pr(X = 0)) ·O(exp(−2d/
√
s′))

This is essentially the claimed form of our moment matching bound (cf. Lemma 12). J

We further note that it is also possible to derive a slightly weaker version of Theorem 19
from our moment matching bound; thus, the two are essentially equivalent.
Proof of Approximate Inclusion-Exclusion from Lemma 12: Consider X =

∑s′

i=1 I[Ai] and
Y =

∑s′

i=1 I[Bi]. Then, for all t ≤ d, we have

E(Xt) = E

 ∑
z∈[s′]t

t∏
i=1

I[Azi ]

 =
∑
z∈[s′]t

Pr

 ⋂
j:∃izi=j

Aj

 =
∑
z∈[s′]t

Pr

 ⋂
j:∃izi=j

Bj

 = E(Y t)

since each Pr
(⋂

j:∃izi=j Aj

)
= Pr

(⋂
j:∃izi=j Bj

)
by the set-intersection conditions. There-

fore, it follows from Lemma 12 that

Pr(Y = 0) ≤ Pr(X = 0) + 4(1− Pr(X = 0)) exp(−(d/
√

2s′))

By construction, 1− Pr(X = 0) = Pr
(⋃s′

i=1Ai

)
and 1− Pr(Y = 0) = Pr

(⋃s′
i=1Bi

)
, so we

immediately have

Pr

 s′⋃
i=1

Ai

 (1− 4 exp(−d/
√

2s′)) ≤ Pr

 s′⋃
i=1

Bi


Noting that (when d/

√
s′ is not too small)

1
1− 4 exp(−d/

√
2s′)

≤ 1 +O(exp(−d/
√

2s′))

we find

Pr
(⋃s′

i=1Ai

)
Pr
(⋃s′

i=1Bi

) ≤ 1 +O(exp(−d/
√

2s′))

J

C.2 Alternative proof of the depth-4 bound via approximate
inclusion-exclusion

In addition to the use of approximate inclusion-exclusion as an alternative proof of the
moment-matching bound, we note that one of the corollaries to approximate inclusion-
exclusion proved by Linial and Nisan [15] can be used to give an alternative proof of our
almost-quadratic lower bound for depth-4 circuits. Specifically, Linial and Nisan obtained
the following application of approximate inclusion-exclusion to Boolean circuits:

CVIT 2016
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I Theorem 21 (Theorem 5 of Linial and Nisan [15]). Let f1, f2, . . . , fs and g be Boolean
functions such that for every S ⊆ {1, . . . , s},∣∣∣∣∣Pr

[∧
i∈S

fi(x) = g(x)]
]
− Pr

[∧
i∈S

fi(x) 6= g(x)
]∣∣∣∣∣ ≤ 2−t

for t ≥ Ω(
√
s log s). Then∣∣∣∣∣Pr

[
s∨
i=1

fi(x) = g(x)
]
− Pr

[
s∨
i=1

fi(x) 6= g(x)
]∣∣∣∣∣ ≤ 2−Ω(t/

√
s log s)

Let the functions f1, . . . , fs of Theorem 21 be the functions computed by the AND gates
in the depth-3 approximator we obtain from the Discriminator Lemma (i.e., feeding in into
the output-layer OR gate), and let g be the inner product function. Then ANDs of any
subset of f1, . . . , fs is simply another AND gate, and we can obtain a sufficiently small bound
on the advantage of and AND-of-parities at computing IP in order to apply Theorem 21
with t ≈

√
spoly log(s). The conclusion of Theorem 21 then establishes that the depth-3

approximator is sufficiently poorly correlated (has agreement less than 1/ poly(n)) with IP
to complete our argument when s = Õ(n2).

D Omitted details of Section 3

D.1 Linear restrictions of the Inner Product function
We now prove the folklore claim that IP cannot be made constant by imposing less than
n/2 linear restrictions on its inputs. Actually, we prove this claim for more general bent
functions, thus proving a stronger statement. We also observe one could similarly show that
if a Boolean function has all its Fourier coefficients bounded in magnitude by 2−Ω(n), then
the function is not constant on a subspace of Fn2 of co-dimension o(n). Such a condition
would also suffice to prove superlinear lower bounds in our framework.

Linear restrictions.
Let f : Fn2 → {0, 1} be a Boolean function. Define two sub-functions f0 (resp., f1) mapping
Fn−1

2 to {0, 1} as f0(y) := f(0, y) (resp., f1(y) := f(1, y)), where (z, y) denotes string
concatenation of z and y. The function f0 (resp., f1) is the result of the restriction x1 = 0
(resp., x1 = 1). In other words, truth table of f0 and f1 are each restriction of truth table
of f to an affine subspace of co-dimension 1. Such restrictions can be naturally generalized
with respect to arbitrary affine constraints (rather than xi = 0 or xi = 1).

Let S be an affine subspace defined by a set of linearly independent affine constraints
`α1(x) = b1, . . . , `αt(x) = bt, where α1, . . . , αt ∈ Fn2 and b1, . . . , bt ∈ {0, 1}. Then, the
sub-function resulting from these affine restrictions, f |S(x) is a partial function defined by
f |S(x) := f(x) for all x ∈ S. Usually it is convenient to map the domain of such sub-functions
to the Boolean hypercube. To this end, one can define an invertible linear transformation
L : Fn2 → Fn2 such that L(αi) = ei for i ∈ [t] (where ei is the ith standard basis vector),
and let (Lf)(x) := f(L(x)) be the function f under the basis change defined by L. Under
this change of basis, we see that an ordinary restriction of variable of the function Lf (i.e.,
x1 = b1, . . . , xt = bt) corresponds to the restriction of the original f to S. That is, the truth
table of Lf under the restriction x1 = b1, . . . , xt = bt (that we denote by (Lf)b1,...,bt) would
be the same as the truth table of f on S. Therefore, we can conveniently study sub-functions



M. Cheraghchi, E. Grigorescu, B. Juba, K. Wimmer, N. Xie 23:19

resulting from linear restrictions by first applying a linear transformation to the input space
x1, . . . , xn and then applying restriction in the ordinary sense (i.e., setting individual input
bits) to the resulting function.

I Lemma 22 (generalization of Folk Lemma). Let f be a bent function and let `α1 =
b1, . . . , `αt = bt be a set of t < n/2 linearly independent restrictions. If f |S is the subfunction
resulting from these linear restrictions, then f |S is not a constant function.

Proof. In an intuitive sense, the proof can be described as follows. We write down the poly-
nomial representation of f in the {−1,+1} representation as defined by its Fourier transform.
We note that a function is constant if and only if the Fourier coefficient corresponding to the
empty set is either −1 or +1. The restrictions can be applied to the polynomial representation
and collapse some of the monomials into the constant term. Since the coefficient of each
monomial is equal to 2−n/2 in absolute value, and noting that the given restrictions collapse
at most 2t of the monomials, the function can not accumulate enough mass on the Fourier
coefficient for the empty set to reduce to the constant function, as long as t < n/2.

More formally, let L be any invertible linear transformation as defined above satisfying
L(α1) = e1, . . . , L(αt) = et. It suffices to show that g := (Lf)b1···bt is not constant, where
g : Fn−t2 → {0, 1}. Since the Fourier spectrum of Lf satisfies L̂f(α) = f̂(L−1α) and L is
invertible, hence Lf is also a bent function (the Fourier coefficients of Lf are simply a
reordering of the Fourier coefficients of f). We now switch to the {−1, 1}-representation of
Boolean functions (letting ĝ±(x) := (−1)g(x) and ̂(Lf)±(x) := (−1)(Lf)(x)), and recall the
well-known fact that for any γ ∈ Fn−t2 ,

ĝ±(γ) =
∑
β∈Ft2

(̂Lf)±(β, γ)χβ(b1, . . . , bt).

Since Lf is bent, |(̂Lf)±(β, γ)| = 2−n/2 for every β and γ; and since t < n/2, it follows
that |ĝ±(γ)| < 1 for all γ ∈ Fn−t2 . In particular, |ĝ±(0)| < 1. But if g is a constant Boolean
function, ĝ±(0) = 1 or −1. Therefore, g is not constant. J

D.2 Omitted details of the proof of Lemma 14
The proof fixes the gates in the circuit from bottom up. Let d = S2·4−k , and M = S4−k .
Define a sequence of degrees d0 = 0, d1 = d ≥ 2, and di+1 = d4

i , for i ∈ [k]. Let δ(g) be the
number of input variables or parities that “influence” a free6 gate g; that is, the minimum
set of variables or parity gates whose fixing suffices to set the value of g to either 0 or 1. As
the proof proceeds and fixes various input variables or parity gates, the value of δ(g) may
reduce for each gate (for gates that are already fixed, δ(g) is defined to be zero).

To fix a gate g at level i, we perform either a FixIndegree(g, i) or a FixOutdegree(g, i)
operation. If the indegree of gate g at level i is larger than di then FixIndegree(g, i) fixes
the gate as follows: If g is an AND gate it fixes one of the free gates feeding into it to 0. If g
is an OR gate we fix a free gate feeding into it to 1. Note that at most δ(g) input variables
or parities are fixed this way.

If the outdegree of gate g at level i is larger than M · δ(g), then FixOutdegree(g, i)
fixes the gate as follows: If at least half the gates that g feeds into are OR gates it fixes the
gate to 1, otherwise it fixes the gate to 0. This fixes a number of gates lower bounded by
M/2 times the number of bottom gates set.

6 A free gate is one whose output is not fixed to a constant.
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Note that in order to fix gates at higher levels we need to fix the free gates at the
bottom level, and propagate them upwards. To ensure consistency, we maintain a set of
bottom parities P (we view input variables x1, . . . , xn as parities as well) that have been
already set (for example, if a bottom gate x1 + x3 needs to be set to 0, we update the set
P ← P ∪ {x1 + x3 = 0}.) Once a new parity is added to the set P , we accordingly fix the
values of bottom parities that are linear combinations of the parities in P . We then propagate
the new gate values up the circuit, and then continue fixing gates in this consistent manner,
using FixIndegree and FixOutdegree of gates at increasing levels. Note that we only
add to P linear constraints that are linearly independent, and thus consistency is always
maintained.

We fix gates by sequentially fixing gates from the bottom level (i.e., the parity gates) to
the output level (i.e., the output gate). First, the outdegrees of all gates at level i are fixed,
then indegrees of all gates at level i+ 1, and then outdegrees of all gates at level i+ 1, and
so forth until the output gate is reached.

We may now show that this procedure fixes only 5S1−4−k bottom parity inputs, by
repeating the computation from [3]. Let σ be the partial assignment to the variables (and
parities) after completing the gate fixing steps and reaching the output gate (essentially this
assignment is saved in the set of linear restrictions P ).

Note that the partial circuit obtained in the end has every gate g at level i of indegree
at most di, and outdegree of each gate is at most Mδ(g). Also note that the total number
of bottom gates fixed in calls to FixOutdegree(g, i), for all i, is at most 2S/M ; since the
number of gates fixed is at least M/2 times the number of bottom inputs fixed, which in
turn is at most S.

Now we show that the number of bottom gates set during calls to FixIndegree(g, i),
for all i, is at most 2SM/d. Note that since we first fix indegrees at level i− 1 before fixing
indegrees at level i, the number of variables and parities set while fixing a gate at level i is
at most d1d2 · · · di−1. Similarly, since we fix outdegrees at level i− 1 before fixing outdegrees
at level i, the outdegree of any gate at level j < i is at most M(d1 · · · di−1). So the total
number of gates at level i of degree larger than di is at most SM(d1 · · · di−1)/di. Summing
over all levels, the number of bottom gates set during calls to FixIndegree is at most
SM

∑k
i=1(d1 · · · di−1)2/di. It can be verified that (d1 · · · di−1)2/di ≤ 1/(2i−1d), which is at

most SM
∑k
i=1(d1 · · · di−1)2/di ≤ 2SM/d.

To fix the output gate, we might need to fix at most an additional d1 · · · dk−1 < S1/2 <

S1−4−k bottom gates or parities (since in the end, the indegree of each gate at level i is at
most di). Thus, overall it is enough to fix a total of 2S/M + 2SM/d+ S1−4−k = 5S1−4−k

bottom gates in order to fix the final output of the circuit, and those are the inputs or parities
collected in the set P .

D.3 Generalization of Theorem 13 to bent functions
Using Lemma 22 and Lemma 14, the following theorem follows by the same argument from
the proof of Theorem 13.

I Theorem 23. If C is an AC0 ◦MOD2 circuit of depth k and size S that computes a bent
function f : {0, 1}n → {0, 1}, then S = Ω(n1+4−k).
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