101 research outputs found

    Associations of supermarket accessibility with obesity and fruit and vegetable consumption in the conterminous United States

    Get PDF
    Abstract Background Limited access to supermarkets may reduce consumption of healthy foods, resulting in poor nutrition and increased prevalence of obesity. Most studies have focused on accessibility of supermarkets in specific urban settings or localized rural communities. Less is known, however, about how supermarket accessibility is associated with obesity and healthy diet at the national level and how these associations differ in urban versus rural settings. We analyzed data on obesity and fruit and vegetable (F/V) consumption from the Behavioral Risk Factor Surveillance System for 2000-2006 at the county level. We used 2006 Census Zip Code Business Patterns data to compute population-weighted mean distance to supermarket at the county level for different sizes of supermarket. Multilevel logistic regression models were developed to test whether population-weighted mean distance to supermarket was associated with both obesity and F/V consumption and to determine whether these relationships varied for urban (metropolitan) versus rural (nonmetropolitan) areas. Results Distance to supermarket was greater in nonmetropolitan than in metropolitan areas. The odds of obesity increased and odds of consuming F/V five times or more per day decreased as distance to supermarket increased in metropolitan areas for most store size categories. In nonmetropolitan areas, however, distance to supermarket had no associations with obesity or F/V consumption for all supermarket size categories. Conclusions Obesity prevalence increased and F/V consumption decreased with increasing distance to supermarket in metropolitan areas, but not in nonmetropolitan areas. These results suggest that there may be a threshold distance in nonmetropolitan areas beyond which distance to supermarket no longer impacts obesity and F/V consumption. In addition, obesity and food environments in nonmetropolitan areas are likely driven by a more complex set of social, cultural, and physical factors than a single measure of supermarket accessibility. Future research should attempt to more precisely quantify the availability and affordability of foods in nonmetropolitan areas and consider alternative sources of healthy foods besides supermarkets.</p

    Multi-scale Habitat Use of Male Ruffed Grouse in the Black Hills National Forest

    Get PDF
    Ruffed grouse (Bonasa umbellus) are native upland game birds and a management indicator species (MIS) for aspen (Populus tremuloides) in the Black Hills National Forest (Black Hills). Our objective was to assess resource selection of male ruffed grouse to identify the most appropriate scale to manage for aspen and ruffed grouse in the Black Hills. During spring 2007 and 2008, we conducted drumming surveys throughout the central and northern Black Hills to locate used and unused sites from which we compared habitat characteristics at increasing spatial scales. Aspen with \u3e70% overstory canopy cover (OCC) was important to the occurrence of ruffed grouse across all spatial scales, but was most influential within 1600 m of drumming sites. Probability of a site being used was maximized when 20% of the 1600-m scale (~804 ha) had aspen with \u3e70% OCC. Ruffed grouse also selected for areas with many small, regular shaped patches of aspen over those with few large patches. At the smallest scale evaluated of 200 m (~12.5 ha), ruffed grouse selected drumming logs in close proximity to high stem densities of aspen with a minimal presence of roads. Ponderosa pine (Pinus ponderosa) had a negative influence on site selection at the 400-m (~50 ha), 1600-m (~804 ha), and 4800-m (~7200 ha) scales. Management for ruffed grouse in the Black Hills as the MIS for aspen should focus on increasing the extent of aspen with a goal of at least 20% occurrence on the landscape. Management efforts also should incorporate multiple age and size classes of aspen with an emphasis on enhancing early successional habitat to provide valuable cover through increased stem densities

    Ecological Niche of the 2003 West Nile Virus Epidemic in the Northern Great Plains of the United States

    Get PDF
    Background: The incidence of West Nile virus (WNv) has remained high in the northern Great Plains compared to the rest of the United States. However, the reasons for the sustained high risk of WNv transmission in this region have not been determined. To assess the environmental drivers of WNv in the northern Great Plains, we analyzed the county-level spatial pattern of human cases during the 2003 epidemic across a seven-state region. Methodology/Principal Findings: County-level data on WNv cases were examined using spatial cluster analysis, and were used to fit statistical models with weather, climate, and land use variables as predictors. In 2003 there was a single large cluster of elevated WNv risk encompassing North Dakota, South Dakota, and Nebraska along with portions of eastern Montana and Wyoming. The relative risk of WNv remained high within the boundaries of this cluster from 2004–2007. WNv incidence during the 2003 epidemic was found to have a stronger relationship with long-term climate patterns than with annual weather in either 2002 or 2003. WNv incidence increased with mean May–July temperature and had a unimodal relationship with total May–July precipitation. WNv incidence also increased with the percentage of irrigated cropland and with the percentage of the human population living in rural areas. Conclusions/Significance: The spatial pattern of WNv cases during the 2003 epidemic in the northern Great Plains was associated with both climatic gradients and land use patterns. These results were interpreted as evidence that environmental conditions across much of the northern Great Plains create a favorable ecological niche for Culex tarsalis, a particularly efficient vector of WNv. Further research is needed to determine the proximal causes of sustained WNv transmission and to enhance strategies for disease prevention

    Integrating modelling and smart sensors for environmental and human health.

    Get PDF
    Sensors are becoming ubiquitous in everyday life, generating data at an unprecedented rate and scale. However, models that assess impacts of human activities on environmental and human health, have typically been developed in contexts where data scarcity is the norm. Models are essential tools to understand processes, identify relationships, associations and causality, formalize stakeholder mental models, and to quantify the effects of prevention and interventions. They can help to explain data, as well as inform the deployment and location of sensors by identifying hotspots and areas of interest where data collection may achieve the best results. We identify a paradigm shift in how the integration of models and sensors can contribute to harnessing 'Big Data' and, more importantly, make the vital step from 'Big Data' to 'Big Information'. In this paper, we illustrate current developments and identify key research needs using human and environmental health challenges as an example.E.S. is funded by NIH R21ES024715. M.C. gratefully acknowledges the Minnesota Discovery, Research and InnoVation Economy (MnDRIVE) “Global Food Venture” funding and the Institute on the Environment “Discovery Grant” funding at the University of Minnesota Twin-Cities. S.R. and S.S. acknowledge the support for the conceptual development and testing of personal exposure monitoring methods by the UK Natural Environment Research Council through National Capability funding.This is the final version of the article. It was first available from Elsevier via http://dx.doi.org/10.1016/j.envsoft.2015.06.00

    Integrating Malaria Surveillance with Climate Data for Outbreak Detection and Forecasting: the EPIDEMIA System

    Get PDF
    Background: Early indication of an emerging malaria epidemic can provide an opportunity for proactive interventions. Challenges to the identification of nascent malaria epidemics include obtaining recent epidemiological surveillance data, spatially and temporally harmonizing this information with timely data on environmental precursors, applying models for early detection and early warning, and communicating results to public health officials. Automated web-based informatics systems can provide a solution to these problems, but their implementation in real-world settings has been limited. Methods: The Epidemic Prognosis Incorporating Disease and Environmental Monitoring for Integrated Assessment (EPIDEMIA) computer system was designed and implemented to integrate disease surveillance with environmental monitoring in support of operational malaria forecasting in the Amhara region of Ethiopia. A co-design workshop was held with computer scientists, epidemiological modelers, and public health partners to develop an initial list of system requirements. Subsequent updates to the system were based on feedback obtained from system evaluation workshops and assessments conducted by a steering committee of users in the public health sector.Results: The system integrated epidemiological data uploaded weekly by the Amhara Regional Health Bureau with remotely-sensed environmental data freely available from online archives. Environmental data were acquired and processed automatically by the EASTWeb software program. Additional software was developed to implement a public health interface for data upload and download, harmonize the epidemiological and environmental data into a unified database, automatically update time series forecasting models, and generate formatted reports. Reporting features included district-level control charts and maps summarizing epidemiological indicators of emerging malaria outbreaks, environmental risk factors, and forecasts of future malaria risk. Conclusions: Successful implementation and use of EPIDEMIA is an important step forward in the use of epidemiological and environmental informatics systems for malaria surveillance. Developing software to automate the workflow steps while remaining robust to continual changes in the input data streams was a key technical challenge. Continual stakeholder involvement throughout design, implementation, and operation has created a strong enabling environment that will facilitate the ongoing development, application, and testing of the system

    A proposed framework for the development and qualitative evaluation of West Nile virus models and their application to local public health decision-making

    Get PDF
    West Nile virus(WNV) is a globally distributed mosquito-borne virus of great public health concern. The number of WNV human cases and mosquito infection patterns vary in space and time. Many statistical models have been developed to understand and predict WNV geographic and temporal dynamics. However, these modeling efforts have been disjointed with little model comparison and inconsistent validation. In this paper, we describe a framework to unify and standardize WNV modeling efforts nationwide. WNV risk, detection, or warning models for this review were solicited from active research groups working in different regions of the United States. A total of 13 models were selected and described. The spatial and temporal scales of each model were compared to guide the timing and the locations for mosquito and virus surveillance, to support mosquito vector control decisions, and to assist in conducting public health outreach campaigns at multiple scales of decision-making. Our overarching goal is to bridge the existing gap between model development, which is usually conducted as an academic exercise, and practical model applications, which occur at state, tribal, local, or territorial public health and mosquito control agency levels. The proposed model assessment and comparison framework helps clarify the value of individual models for decision-making and identifies the appropriate temporal and spatial scope of each model. This qualitative evaluation clearly identifies gaps in linking models to applied decisions and sets the stage for a quantitative comparison of models. Specifically, whereas many coarse-grained models (county resolution or greater) have been developed, the greatest need is for fine-grained, short-term planning models (m–km, days–weeks) that remain scarce. We further recommend quantifying the value of information for each decision to identify decisions that would benefit most from model input

    A systematic review on integration mechanisms in human and animal health surveillance systems with a view to addressing global health security threats

    Get PDF
    Lymphatic filariasis and onchocerciasis are neglected tropical diseases (NTDs) targeted for elimination by mass (antifilarial) drug administration. These drugs are predominantly active against the microfilarial progeny of adult worms. New drugs or combinations are needed to improve patient therapy and to enhance the effectiveness of interventions in persistent hotspots of transmission. Several therapies and regimens are currently in (pre-)clinical testing. Clinical trial simulators (CTSs) project patient outcomes to inform the design of clinical trials but have not been widely applied to NTDs, where their resource-saving payoffs could be highly beneficial. We demonstrate the utility of CTSs using our individual-based onchocerciasis transmission model (EPIONCHO-IBM) that projects trial outcomes of a hypothetical macrofilaricidal drug. We identify key design decisions that influence the power of clinical trials, including participant eligibility criteria and post-treatment follow-up times for measuring infection indicators. We discuss how CTSs help to inform target product profiles
    corecore