1,569 research outputs found

    Inferring collective dynamical states from widely unobserved systems

    Full text link
    When assessing spatially-extended complex systems, one can rarely sample the states of all components. We show that this spatial subsampling typically leads to severe underestimation of the risk of instability in systems with propagating events. We derive a subsampling-invariant estimator, and demonstrate that it correctly infers the infectiousness of various diseases under subsampling, making it particularly useful in countries with unreliable case reports. In neuroscience, recordings are strongly limited by subsampling. Here, the subsampling-invariant estimator allows to revisit two prominent hypotheses about the brain's collective spiking dynamics: asynchronous-irregular or critical. We identify consistently for rat, cat and monkey a state that combines features of both and allows input to reverberate in the network for hundreds of milliseconds. Overall, owing to its ready applicability, the novel estimator paves the way to novel insight for the study of spatially-extended dynamical systems.Comment: 7 pages + 12 pages supplementary information + 7 supplementary figures. Title changed to match journal referenc

    Homeostatic plasticity and external input shape neural network dynamics

    Full text link
    In vitro and in vivo spiking activity clearly differ. Whereas networks in vitro develop strong bursts separated by periods of very little spiking activity, in vivo cortical networks show continuous activity. This is puzzling considering that both networks presumably share similar single-neuron dynamics and plasticity rules. We propose that the defining difference between in vitro and in vivo dynamics is the strength of external input. In vitro, networks are virtually isolated, whereas in vivo every brain area receives continuous input. We analyze a model of spiking neurons in which the input strength, mediated by spike rate homeostasis, determines the characteristics of the dynamical state. In more detail, our analytical and numerical results on various network topologies show consistently that under increasing input, homeostatic plasticity generates distinct dynamic states, from bursting, to close-to-critical, reverberating and irregular states. This implies that the dynamic state of a neural network is not fixed but can readily adapt to the input strengths. Indeed, our results match experimental spike recordings in vitro and in vivo: the in vitro bursting behavior is consistent with a state generated by very low network input (< 0.1%), whereas in vivo activity suggests that on the order of 1% recorded spikes are input-driven, resulting in reverberating dynamics. Importantly, this predicts that one can abolish the ubiquitous bursts of in vitro preparations, and instead impose dynamics comparable to in vivo activity by exposing the system to weak long-term stimulation, thereby opening new paths to establish an in vivo-like assay in vitro for basic as well as neurological studies.Comment: 14 pages, 8 figures, accepted at Phys. Rev.

    Tailored ensembles of neural networks optimize sensitivity to stimulus statistics

    Full text link
    The dynamic range of stimulus processing in living organisms is much larger than a single neural network can explain. For a generic, tunable spiking network we derive that while the dynamic range is maximal at criticality, the interval of discriminable intensities is very similar for any network tuning due to coalescence. Compensating coalescence enables adaptation of discriminable intervals. Thus, we can tailor an ensemble of networks optimized to the distribution of stimulus intensities, e.g., extending the dynamic range arbitrarily. We discuss potential applications in machine learning.Comment: 6 pages plus supplemental materia

    Real vs. acted emotional speech

    Get PDF
    corecore