5,120 research outputs found
Recommended from our members
Effect of inorganic-to-organic mass ratio on the heterogeneous OH reaction rates of erythritol: Implications for atmospheric chemical stability of 2-methyltetrols
The 2-methyltetrols have been widely chosen as chemical tracers for isoprene-derived secondary organic aerosols. While they are often assumed to be relatively unreactive, a laboratory study reported that pure erythritol particles (an analog of 2-methyltetrols) can be heterogeneously oxidized by gas-phase OH radicals at a significant rate. This might question the efficacy of these compounds as tracers in aerosol source-apportionment studies. Additional uncertainty could arise as organic compounds and inorganic salts often coexist in atmospheric particles. To gain more insights into the chemical stability of 2-methyltetrols in atmospheric particles, this study investigates the heterogeneous OH oxidation of pure erythritol particles and particles containing erythritol and ammonium sulfate (AS) at different dry inorganic-to-organic mass ratios (IOR) in an aerosol flow tube reactor at a high relative humidity of 85 %. The same reaction products are formed upon heterogenous OH oxidation of erythritol and erythritol-AS particles, suggesting that the reaction pathways are not strongly affected by the presence and amount of AS. On the other hand, the effective OH uptake coefficient, eff, is found to decrease by about a factor of 20 from 0:450:025 to 0:020:001 when the relative abundance of AS increases and the IOR increases from 0.0 to 5.0. One likely explanation is the presence of dissolved ions slows down the reaction rates by decreasing the surface concentration of erythritol and reducing the frequency of collision between erythritol and gas-phase OH radicals at the particle surface. Hence, the heterogeneous OH reactivity of erythritol and likely 2-methyltetrols in atmospheric particles would be slower than previously thought when the salts are present. Given 2-methyltetrols often coexist with a significant amount of AS in many environments, where ambient IOR can vary from 1:89 to 250, our kinetic data would suggest that 2-methyltetrols in atmospheric particles are likely chemically stable against heterogeneous OH oxidation under humid conditions
Modeling the influence of attitudes, trust, and beliefs on endoscopists’ acceptance of artificial intelligence applications in medical practice
IntroductionThe potential for deployment of Artificial Intelligence (AI) technologies in various fields of medicine is vast, yet acceptance of AI amongst clinicians has been patchy. This research therefore examines the role of antecedents, namely trust, attitude, and beliefs in driving AI acceptance in clinical practice.MethodsWe utilized online surveys to gather data from clinicians in the field of gastroenterology.ResultsA total of 164 participants responded to the survey. Participants had a mean age of 44.49 (SD = 9.65). Most participants were male (n = 116, 70.30%) and specialized in gastroenterology (n = 153, 92.73%). Based on the results collected, we proposed and tested a model of AI acceptance in medical practice. Our findings showed that while the proposed drivers had a positive impact on AI tools’ acceptance, not all effects were direct. Trust and belief were found to fully mediate the effects of attitude on AI acceptance by clinicians.DiscussionThe role of trust and beliefs as primary mediators of the acceptance of AI in medical practice suggest that these should be areas of focus in AI education, engagement and training. This has implications for how AI systems can gain greater clinician acceptance to engender greater trust and adoption amongst public health systems and professional networks which in turn would impact how populations interface with AI. Implications for policy and practice, as well as future research in this nascent field, are discussed
COVID-19 in cancer patients on systemic anti-cancer therapies: outcomes from the CAPITOL (COVID-19 Cancer PatIenT Outcomes in North London) cohort study
Background: Patients with cancer are hypothesised to be at increased risk of contracting COVID-19, leading to changes in treatment pathways in those treated with systemic anti-cancer treatments (SACT). This study investigated the outcomes of patients receiving SACT to assess whether they were at greater risk of contracting COVID-19 or having more severe outcomes. /
Methods: Data was collected from all patients receiving SACT in two cancer centres as part of CAPITOL (COVID-19 Cancer PatIenT Outcomes in North London). The primary outcome was the effect of clinical characteristics on the incidence and severity of COVID-19 infection in patients on SACT. We used univariable and multivariable models to analyse outcomes, adjusting for age, gender and comorbidities. /
Results: A total of 2871 patients receiving SACT from 2 March to 31 May 2020 were analysed; 68 (2.4%) were diagnosed with COVID-19. Cancer patients receiving SACT were more likely to die if they contracted COVID-19 than those who did not [adjusted (adj.) odds ratio (OR) 9.84; 95% confidence interval (CI) 5.73–16.9]. Receiving chemotherapy increased the risk of developing COVID-19 (adj. OR 2.99; 95% CI = 1.72–5.21), with high dose chemotherapy significantly increasing risk (adj. OR 2.36, 95% CI 1.35–6.48), as did the presence of comorbidities (adj. OR 2.29; 95% CI 1.19–4.38), and having a respiratory or intrathoracic neoplasm (adj. OR 2.12; 95% CI 1.04–4.36). Receiving targeted treatment had a protective effect (adj. OR 0.53; 95% CI 0.30–0.95). Treatment intent (curative versus palliative), hormonal- or immunotherapy and solid versus haematological cancers had no significant effect on risk. /
Conclusion: Patients on SACT are more likely to die if they contract COVID-19. Those on chemotherapy, particularly high dose chemotherapy, are more likely to contract COVID-19, while targeted treatment appears to be protective
Structure of a putative NTP pyrophosphohydrolase: YP_001813558.1 from Exiguobacterium sibiricum 255-15.
The crystal structure of a putative NTPase, YP_001813558.1 from Exiguobacterium sibiricum 255-15 (PF09934, DUF2166) was determined to 1.78 Å resolution. YP_001813558.1 and its homologs (dimeric dUTPases, MazG proteins and HisE-encoded phosphoribosyl ATP pyrophosphohydrolases) form a superfamily of all-α-helical NTP pyrophosphatases. In dimeric dUTPase-like proteins, a central four-helix bundle forms the active site. However, in YP_001813558.1, an unexpected intertwined swapping of two of the helices that compose the conserved helix bundle results in a `linked dimer' that has not previously been observed for this family. Interestingly, despite this novel mode of dimerization, the metal-binding site for divalent cations, such as magnesium, that are essential for NTPase activity is still conserved. Furthermore, the active-site residues that are involved in sugar binding of the NTPs are also conserved when compared with other α-helical NTPases, but those that recognize the nucleotide bases are not conserved, suggesting a different substrate specificity
Structure of the γ-D-glutamyl-L-diamino acid endopeptidase YkfC from Bacillus cereus in complex with L-Ala-γ-D-Glu: insights into substrate recognition by NlpC/P60 cysteine peptidases.
Dipeptidyl-peptidase VI from Bacillus sphaericus and YkfC from Bacillus subtilis have both previously been characterized as highly specific γ-D-glutamyl-L-diamino acid endopeptidases. The crystal structure of a YkfC ortholog from Bacillus cereus (BcYkfC) at 1.8 Å resolution revealed that it contains two N-terminal bacterial SH3 (SH3b) domains in addition to the C-terminal catalytic NlpC/P60 domain that is ubiquitous in the very large family of cell-wall-related cysteine peptidases. A bound reaction product (L-Ala-γ-D-Glu) enabled the identification of conserved sequence and structural signatures for recognition of L-Ala and γ-D-Glu and, therefore, provides a clear framework for understanding the substrate specificity observed in dipeptidyl-peptidase VI, YkfC and other NlpC/P60 domains in general. The first SH3b domain plays an important role in defining substrate specificity by contributing to the formation of the active site, such that only murein peptides with a free N-terminal alanine are allowed. A conserved tyrosine in the SH3b domain of the YkfC subfamily is correlated with the presence of a conserved acidic residue in the NlpC/P60 domain and both residues interact with the free amine group of the alanine. This structural feature allows the definition of a subfamily of NlpC/P60 enzymes with the same N-terminal substrate requirements, including a previously characterized cyanobacterial L-alanine-γ-D-glutamate endopeptidase that contains the two key components (an NlpC/P60 domain attached to an SH3b domain) for assembly of a YkfC-like active site
WASP-86b and WASP-102b: super-dense versus bloated planets
We report the discovery of two transiting planetary systems: a super dense, sub-Jupiter mass planet WASP-86b (Mpl = 0.82 ± 0.06 MJ; Rpl = 0.63 ± 0.01 RJ), and a bloated, Saturn-like planet WASP-102b (Mpl = 0.62 ± 0.04 MJ; Rpl = 1.27 ± 0.03 RJ). They orbit their
host star every ∼5.03, and ∼2.71 days, respectively. The planet hosting WASP-86 is a F7 star (Teff = 6330±110 K, [Fe/H] = +0.23 ± 0.14 dex, and age ∼0.8–1 Gyr); WASP-102 is a G0 star (Teff = 5940±140 K, [Fe/H] = −0.09± 0.19 dex, and age ∼1 Gyr). These two systems highlight the diversity of planetary radii over similar masses for giant planets with masses between Saturn and Jupiter. WASP-102b shows a larger than model-predicted radius, indicating that the planet is receiving a strong incident flux which contributes to the inflation of its radius. On the other hand, with a density of ρpl = 3.24± 0.3 ρJ, WASP-86b is the densest gas giant planet among
planets with masses in the range 0.05 Mpl J. With a stellar mass of 1.34 M⊙ and [Fe/H]= +0.23 dex, WASP-86 could host additional massive and dense planets given that its protoplanetary disc is expected to also have been enriched with heavy elements. In order to match WASP-86b’s density, an extrapolation of theoretical models predicts a planet composition of more than 80% in heavy elements (whether confined in a core or mixed in the envelope). This fraction corresponds to a core mass of approximately 210M⊕ for WASP-86b’s mass of Mpl∼260 M⊕. Only planets with masses larger than about 2 MJ have larger densities than that of WASP-86b, making it exceptional in its mass range
Direct inhibition of the DNA-binding activity of POU transcription factors Pit-1 and Brn-3 by selective binding of a phenyl-furan-benzimidazole dication
The development of small molecules to control gene expression could be the spearhead of future-targeted therapeutic approaches in multiple pathologies. Among heterocyclic dications developed with this aim, a phenyl-furan-benzimidazole dication DB293 binds AT-rich sites as a monomer and 5′-ATGA sequence as a stacked dimer, both in the minor groove. Here, we used a protein/DNA array approach to evaluate the ability of DB293 to specifically inhibit transcription factors DNA-binding in a single-step, competitive mode. DB293 inhibits two POU-domain transcription factors Pit-1 and Brn-3 but not IRF-1, despite the presence of an ATGA and AT-rich sites within all three consensus sequences. EMSA, DNase I footprinting and surface-plasmon-resonance experiments determined the precise binding site, affinity and stoichiometry of DB293 interaction to the consensus targets. Binding of DB293 occurred as a cooperative dimer on the ATGA part of Brn-3 site but as two monomers on AT-rich sites of IRF-1 sequence. For Pit-1 site, ATGA or AT-rich mutated sequences identified the contribution of both sites for DB293 recognition. In conclusion, DB293 is a strong inhibitor of two POU-domain transcription factors through a cooperative binding to ATGA. These findings are the first to show that heterocyclic dications can inhibit major groove transcription factors and they open the door to the control of transcription factors activity by those compounds
Branch Rings, Thinned Rings, Tree Enveloping Rings
We develop the theory of ``branch algebras'', which are infinite-dimensional
associative algebras that are isomorphic, up to taking subrings of finite
codimension, to a matrix ring over themselves. The main examples come from
groups acting on trees.
In particular, for every field k we construct a k-algebra K which (1) is
finitely generated and infinite-dimensional, but has only finite-dimensional
quotients;
(2) has a subalgebra of finite codimension, isomorphic to ;
(3) is prime;
(4) has quadratic growth, and therefore Gelfand-Kirillov dimension 2;
(5) is recursively presented;
(6) satisfies no identity;
(7) contains a transcendental, invertible element;
(8) is semiprimitive if k has characteristic ;
(9) is graded if k has characteristic 2;
(10) is primitive if k is a non-algebraic extension of GF(2);
(11) is graded nil and Jacobson radical if k is an algebraic extension of
GF(2).Comment: 35 pages; small changes wrt previous versio
High sensitivity cymbal-based accelerometer
A high sensitivity piezoelectric accelerometer has been developed by replacing the conventional piezoelectric rings with a cymbal transducer. The sensitivity of the cymbal-based accelerometers containing cymbal transducers with different endcap thicknesses and different seismic masses has been measured as a function of driving frequency. Due to the high d'₃₃ coefficient of the cymbal transducers, the cymbal-based accelerometers have a high sensitivity of ~97 pC/ms[sup -]² with the amplitude rise of 2.85% (<1 dB) at one-third of the mounted resonance frequency (3.38 kHz). The effect of the seismic mass, the resonance frequency, and d'₃₃ coefficient of the cymbal transducers on the sensitivity and the frequency range of the cymbal-based accelerometers are reported.Department of Applied PhysicsMaterials Research CentreAuthor name used in this publication: Cheng-Liang SunAuthor name used in this publication: K. H. LamAuthor name used in this publication: S. H. ChoyAuthor name used in this publication: H. L. W. ChanAuthor name used in this publication: X.-Z. ZhaoAuthor name used in this publication: C. L. Cho
The Apache Point Observatory Galactic Evolution Experiment (APOGEE) Spectrographs
We describe the design and performance of the near-infrared (1.51--1.70
micron), fiber-fed, multi-object (300 fibers), high resolution (R =
lambda/delta lambda ~ 22,500) spectrograph built for the Apache Point
Observatory Galactic Evolution Experiment (APOGEE). APOGEE is a survey of ~
10^5 red giant stars that systematically sampled all Milky Way populations
(bulge, disk, and halo) to study the Galaxy's chemical and kinematical history.
It was part of the Sloan Digital Sky Survey III (SDSS-III) from 2011 -- 2014
using the 2.5 m Sloan Foundation Telescope at Apache Point Observatory, New
Mexico. The APOGEE-2 survey is now using the spectrograph as part of SDSS-IV,
as well as a second spectrograph, a close copy of the first, operating at the
2.5 m du Pont Telescope at Las Campanas Observatory in Chile. Although several
fiber-fed, multi-object, high resolution spectrographs have been built for
visual wavelength spectroscopy, the APOGEE spectrograph is one of the first
such instruments built for observations in the near-infrared. The instrument's
successful development was enabled by several key innovations, including a
"gang connector" to allow simultaneous connections of 300 fibers; hermetically
sealed feedthroughs to allow fibers to pass through the cryostat wall
continuously; the first cryogenically deployed mosaic volume phase holographic
grating; and a large refractive camera that includes mono-crystalline silicon
and fused silica elements with diameters as large as ~ 400 mm. This paper
contains a comprehensive description of all aspects of the instrument including
the fiber system, optics and opto-mechanics, detector arrays, mechanics and
cryogenics, instrument control, calibration system, optical performance and
stability, lessons learned, and design changes for the second instrument.Comment: 81 pages, 67 figures, PASP, accepte
- …