1,871 research outputs found

    The schistosome egg: development and secretions

    Get PDF
    We have investigated the development of the schistosome egg and its secretions in order to understand how it migrates through gut tissues and also initiates pathology in the liver. We show by electron microscopy that the subshell envelope is absent in the newly deposited egg, but appears very early and differentiates as development progresses. In the mature egg, this nucleated envelope contains extensive endoplasmic reticulum, suggestive of a protein synthetic capacity. Furthermore, Reynolds' layer only appears between the envelope and the egg-shell in the mature egg and may represent its accumulated secretions. We have biosynthetically labelled and collected the secretions (ESP) released by mature but not immature eggs during culture. Their fractionation by SDS–PAGE reveals a simple pattern of 6 bands, differing markedly in composition from soluble egg antigen preparations. Electrophoresis in casein substrate gels demonstrates the presence of 2 distinct proteases in the egg secretions. By immunocytochemistry, ESP localized predominantly to the envelope of the mature egg, suggesting that this layer rather than the miracidium is the source of egg secretions

    Characterization of coal products from high temperature processing of Usibelli low-rank coals

    Get PDF
    This research project was conducted in association with Gilbert/Commonwealth Inc. as part of an overall techno-economic assessment of high temperature drying of low-rank coals. This report discusses the characteristics of the dried/pyrolyzed products of two high temperature, evaporative processes and the dried product from a hydrothermal process. The long term goal of this and other coal drying studies conducted at MIRL, was to define drying technologies that have significant and real potential to competitively move Alaska's, low-rank coals (LRCs) into the export, steam coal market of the Pacific Rim. In 1990, Japan imported 33 million metric tons (mt) of steam coal with an additional 39 million mt imported by other Far East nations(2). Australia dominates the export steam coal market to these Pacific Rim countries and exported 48 million mt in 1990 and an additional 61 million mt of metallurgical coal(2). The worldwide steam coal export market has been expanding rapidly, from 20 million mt in 1973 to 150 million mt in 1989, and is expected to double to nearly 300 million mt by the end of the century(3). Could Alaska capture only 3% of the projected new world steam coal market, which is not an unreasonable expectation, the value of the state's coal exports would soar from nominally 28millionperyeartoover28 million per year to over 100 million per year. However, without development of economical methods for drying/stabilizing Alaskan LRCs, the only increase in export of Alaskan coals may be from the few "higher rank" coals within a "reasonable" transport range of the existing Alaska rail system or tidewater. Presently the coal from the Usibelli Coal Mine is the only low-rank coal exported internationally as a steam coal; primarily for its blending properties with other coal to improve combustion. But for Alaskan low-rank coals to truly stand on their own merits, economical drying processes must be developed that produce a physically and chemically stable dried product. The technologies that have the most potential for increasing the use of Alaskan coals are those that can reduce the moisture content of these coals economically, and produce a fuel that is accepted in the international market place. Drying technologies will no doubt differ, depending on the end use of the fuel; be it dried lump coal, briquettes or pellets for pulverized coal or stoker applications, or concentrated coal-water fuels made from hot water dried LRCs. There are a number of developing processes that may work with Alaskan coals. Some drying processes, however, have been plagued by the production of excessive amounts of coal fines, Since the demand for Alaskan coal is currently limited to lump size coal, large quantities of fines are a definite liability. In this study, two high temperature drying/pyrolysis processes and one hydrothermal process were investigated. The high temperature drying/pyrolysis processes were conducted at (1) the Western Research Institute, (WRI) an affiliate of the University of Wyoming Research Corporation, Laramie, WY, and (2) Coal Technology Corporation (CTC) of Brisol, VA. Hydrothermal processing was conducted at MIRL, University of Alaska Fairbanks. A summary of these processes and the products they produced follows.The University of Alaska also provided matching funds for this project, which was a portion of a larger study that leveraged U.S. Department of Energy funds

    Coal in Alaska requirements to enhance environmentally sound use in both domestic and Pacific Rim markets

    Get PDF
    This document originates from three meetings held in 1989 with the leaders of the Alaskan Coal Industry and coal technologists from the U.S. Department of Energy (DOE)~ Mineral Industry Research Laboratory (MIRL) and Geophysical Institute - University of Alaska Fairbanks, the Alaska Department of Natural Resources, the Alaska Science and Technology Commission, several of the Alaska Native Corporations, and a number of coal experts from private industries. The information included is intended to illustrate the vast resource base and quality of Alaskan coals, show the projected size of the Pacific Rim steam coal market, discuss policy changes necessary to facilitate the development of an expanded coal industry, and describe the technology development needs for Alaskan coals to compete in the world market. It is aimed at increasing the general knowledge about the potential of coal in Alaska and providing data for use in marketing the resource.Prepared for the Governor and Legislators - State of Alaska under the Direction of Dr. Henry Cole, Science and Technology Advisor. Technical Editor - Dr. Warrack G. Willson, Energy and Environmental Research Center, University of North Dakota; and Mineral Industry Research Laboratory, University of Alaska Fairbanks. Co-authors - W. (Bill) Irwin, Consultant, Calgary, Alberta; Dr. John Sims, Usibelli Coal Mine Inc.; Dr. p.o. Rao, Mineral Industry Research Laboratory; and Bill Noll, Suneel Alaska Corp

    Stochastic gauges in quantum dynamics for many-body simulations

    Get PDF
    Quantum dynamics simulations can be improved using novel quasiprobability distributions based on non-orthogonal hermitian kernel operators. This introduces arbitrary functions (gauges) into the stochastic equations, which can be used to tailor them for improved calculations. A possible application to full quantum dynamic simulations of BEC's is presented.Comment: 4 pages, 2 figure

    Experimental evidence of a change of exchange anisotropy sign with temperature in Zn-substituted Cu2OSeO3

    Get PDF
    We report small-angle neutron scattering from the conical state in a single crystal of Zn-substituted Cu 2 OSeO 3 . Using a 3D vector-field magnet to reorient the conical wave vector, our measurements show that the magnitude of the conical wave vector changes as a function of crystallographic direction. These changes are explained using the anisotropic exchange interaction (AEI) within the continuum model, whose magnitude in free-energy transitions from a maxima to a minima along the ⟨ 111 ⟩ and ⟨ 100 ⟩ crystallographic directions respectively. We further find that the AEI free-energy constant undergoes a change of sign from positive to negative with decreasing temperature. Unlike in the related compound FeGe, where similar behavior of the AEI induces a reorientation of the helical wave vector, we show that the zero field helical wave vector in ( Cu 0.98 Zn 0.02 ) 2 OSeO 3 remains along the ⟨ 100 ⟩ directions at all temperatures due to the competing fourth-order magnetocrystalline anisotropy becoming dominant at lower temperatures

    Novel fat-link fermion actions

    Get PDF
    The hadron mass spectrum is calculated in lattice QCD using a novel fat-link clover fermion action in which only the irrelevant operators of the fermion action are constructed using smeared links. The simulations are performed on a 16^3 X 32 lattice with a lattice spacing of a=0.125 fm. We compare actions with n=4 and 12 smearing sweeps with a smearing fraction of 0.7. The n=4 Fat Link Irrelevant Clover (FLIC) action provides scaling which is superior to mean-field improvement, and offers advantages over nonperturbative O(a) improvement.Comment: 5 pages, 2 figures, talk given by J.Zanotti at LHP 2001 workshop, Cairns, Australi

    X-ray holographic imaging of magnetic surface spirals in FeGe lamellae

    Get PDF
    Isotropic helimagnets are known to host a diverse range of chiral magnetic states. In 2016, Rybakov et al., theorized the presence of a surface-pinned stacked spin spiral phase [F. N. Rybakov et al., New J. Phys. 18, 045002 (2016)], which has yet to be observed experimentally. The phase is characterized by surface spiral periods exceeding the host material's fundamental winding period L D . Here, we present experimental evidence for the observation of this state in lamellae of FeGe using resonant x-ray holographic imaging data and micromagnetic simulations. We find images of FeGe lamellae, exceeding a critical thickness of 300 nm ( 4.3 L D ), exhibit contrast modulations with a field-dependent periodicity of λ ≥ 1.4 L D , consistent with theoretical predictions of the stacked spiral state. The identification of this spiral state has significant implications for the stability of other coexisting spin textures, and will help complete our understanding of helimagnetic systems

    Stability and metastability of skyrmions in thin lamellae of Cu2OSeO3

    Get PDF
    We report small-angle x-ray scattering measurements of the skyrmion lattice in two 200-nm-thick Cu2OSeO3 lamellae aligned with the applied magnetic field parallel to the out of plane [110] or [100] crystallographic directions. Our measurements show that the equilibrium skyrmion phase in both samples is expanded significantly compared to bulk crystals, existing between approximately 30 and 50 K over a wide region of magnetic field. This skyrmion state is elliptically distorted at low fields for the [110] sample, and symmetric for the [100] sample, possibly due to crystalline anisotropy becoming more important at this sample thickness than it is in bulk samples. Furthermore, we find that a metastable skyrmion state can be observed at low temperature by field cooling through the equilibrium skyrmion pocket in both samples. In contrast to the behavior in bulk samples, the volume fraction of metastable skyrmions does not significantly depend on cooling rate. We show that a possible explanation for this is the change in the lowest temperature of the skyrmion state in this lamellae compared to bulk, without requiring different energetics of the skyrmion state

    Enhancement of the Two-channel Kondo Effect in Single-Electron boxes

    Full text link
    The charging of a quantum box, coupled to a lead by tunneling through a single resonant level, is studied near the degeneracy points of the Coulomb blockade. Combining Wilson's numerical renormalization-group method with perturbative scaling approaches, the corresponding low-energy Hamiltonian is solved for arbitrary temperatures, gate voltages, tunneling rates, and energies of the impurity level. Similar to the case of a weak tunnel barrier, the shape of the charge step is governed at low temperatures by the non-Fermi-liquid fixed point of the two-channel Kondo effect. However, the associated Kondo temperature TK is strongly modified. Most notably, TK is proportional to the width of the level if the transmission through the impurity is close to unity at the Fermi energy, and is no longer exponentially small in one over the tunneling matrix element. Focusing on a particle-hole symmetric level, the two-channel Kondo effect is found to be robust against the inclusion of an on-site repulsion on the level. For a large on-site repulsion and a large asymmetry in the tunneling rates to box and to the lead, there is a sequence of Kondo effects: first the local magnetic moment that forms on the level undergoes single-channel screening, followed by two-channel overscreening of the charge fluctuations inside the box.Comment: 21 pages, 19 figure

    Position-dependent stability and lifetime of the skyrmion state in nickel-substituted Cu2OSeO3

    Get PDF
    We report spatially resolved small-angle neutron-scattering measurements of the conical and skyrmion states of a bulk single crystal of nickel-substituted Cu2OSeO3, with a nominal concentration of Ni of 14%. We observe a significant spatial dependence of the structure of these magnetic states, characterized by increased disorder and misalignment with respect to the applied field as we approach the edge of the sample. Remarkably, the edge skyrmion state is also characterized by an extended stability towards lower temperatures. Surprisingly, in the same region of the sample, the metastable skyrmion state did not show simple decay. Instead, only a fraction of the scattered intensity appeared to decay, and the intensity therefore did not approach zero during our measurements. We suggest that the increased local disorder and the coexistence of conical and skyrmion states, induced by demagnetization effects at the edge of the sample, are responsible for the increased stability of this skyrmion state. We also infer that the unclear metastable behavior of the skyrmion lattice at the edge of the sample is due to the local geometry of the sample, which induces coexistence of different skyrmion states whose lifetimes are superimposed and difficult to separate in the data
    • …
    corecore