48,300 research outputs found

    Vestibular-induced vomiting after vestibulocerebellar lesions

    Get PDF
    Vestibular stimulation, by sinusoidal electrical polarization of the labyrinths of decerebrate cats which can produce vomiting and related activity which resembles motion sickness was examined. The symptoms include panting, salivation, swallowing, and retching as well as vomiting. These symptoms can be produced in cats with lesions of the posterior cerebellar vermis. It is suggested that a transcerebellar pathway from the vestibular apparatus through the nodulus and uvula to the vomiting center is not essential for vestibular induced vomiting and the occurrence of many symptoms of motion

    Vomiting Center reanalyzed: An electrical stimulation study

    Get PDF
    Electrical stimulation of the brainstem of 15 decerebrate cats produced stimulus-bound vomiting in only 4 animals. Vomiting was reproducible in only one cat. Effective stimulating sites were located in the solitary tract and reticular formation. Restricted localization of a vomiting center, stimulation of which evoked readily reproducible results, could not be obtained

    Narrowband Biphoton Generation due to Long-Lived Coherent Population Oscillations

    Full text link
    We study the generation of paired photons due to the effect of four-wave mixing in an ensemble of pumped two-level systems that decay via an intermediate metastable state. The slow population relaxation of the metastable state to the ground state is utilized to create long-lived coherent population oscillation, leading to narrowband nonlinear response of the medium. The biphotons have a narrow bandwidth, long coherence time and length, which can be controlled by the pump field. In addition, the biphotons are antibunched, with antibunching period determined by the dephasing time. During this period, damped oscillations of the biphoton wavefunction occurs if the pump detuning is non-zero.Comment: 7 pages, 2 figure

    Measurement and control of a mechanical oscillator at its thermal decoherence rate

    Full text link
    In real-time quantum feedback protocols, the record of a continuous measurement is used to stabilize a desired quantum state. Recent years have seen highly successful applications in a variety of well-isolated micro-systems, including microwave photons and superconducting qubits. By contrast, the ability to stabilize the quantum state of a tangibly massive object, such as a nanomechanical oscillator, remains a difficult challenge: The main obstacle is environmental decoherence, which places stringent requirements on the timescale in which the state must be measured. Here we describe a position sensor that is capable of resolving the zero-point motion of a solid-state, nanomechanical oscillator in the timescale of its thermal decoherence, a critical requirement for preparing its ground state using feedback. The sensor is based on cavity optomechanical coupling, and realizes a measurement of the oscillator's displacement with an imprecision 40 dB below that at the standard quantum limit, while maintaining an imprecision-back-action product within a factor of 5 of the Heisenberg uncertainty limit. Using the measurement as an error signal and radiation pressure as an actuator, we demonstrate active feedback cooling (cold-damping) of the 4.3 MHz oscillator from a cryogenic bath temperature of 4.4 K to an effective value of 1.1±\pm0.1 mK, corresponding to a mean phonon number of 5.3±\pm0.6 (i.e., a ground state probability of 16%). Our results set a new benchmark for the performance of a linear position sensor, and signal the emergence of engineered mechanical oscillators as practical subjects for measurement-based quantum control.Comment: 24 pages, 10 figures; typos corrected in main text and figure

    Design comparison of cesium and potassium vapor turbine-generator units for space power

    Get PDF
    Design comparison of cesium and potassium vapor turbogenerator units for space power plant

    The normalization of sibling violence: Does gender and personal experience of violence influence perceptions of physical assault against siblings?

    Get PDF
    Despite its pervasive and detrimental nature, sibling violence (SV) remains marginalized as a harmless and inconsequential form of familial aggression. The present study investigates the extent to which perceptions of SV differ from those of other types of interpersonal violence. A total of 605 respondents (197 males, 408 females) read one of four hypothetical physical assault scenarios that varied according to perpetrator–victim relationship type (i.e., sibling vs. dating partner vs. peer vs. stranger) before completing a series of 24 attribution items. Respondents also reported on their own experiences of interpersonal violence during childhood. Exploratory factor analysis reduced 23 attribution items to three internally reliable factors reflecting perceived assault severity, victim culpability, and victim resistance ratings. A 4 × 2 MANCOVA—controlling for respondent age—revealed several significant effects. Overall, males deemed the assault less severe and the victim more culpable than did females. In addition, the sibling assault was deemed less severe compared to assault on either a dating partner or a stranger, with the victim of SV rated just as culpable as the victim of dating, peer, or stranger-perpetrated violence. Finally, respondents with more (frequent) experiences of childhood SV victimization perceived the hypothetical SV assault as being less severe, and victim more culpable, than respondents with no SV victimization. Results are discussed in the context of SV normalization. Methodological limitations and applications for current findings are also outlined

    Finger patterns produced by thermomagnetic instability in superconductors

    Full text link
    A linear analysis of thermal diffusion and Maxwell equations is applied to study the thermomagnetic instability in a type-II superconducting slab. It is shown that the instability can lead to formation of spatially nonuniform distributions of magnetic field and temperature. The distributions acquire a finger structure with fingers perpendicular to the screening current direction. We derive the criterion for the instability, and estimate its build-up time and characteristic finger width. The fingering instability emerges when the background electric field is larger than a threshold field, E>EcE>E_c, and the applied magnetic field exceeds a value Hfing1/EH_fing \propto 1/\sqrt{E}. Numerical simulations support the analytical results, and allow to follow the development of the fingering instability beyond the linear regime. The fingering instability may be responsible for the nucleation of dendritic flux patterns observed in superconducting films using magneto-optical imaging.Comment: 8 pages, 6 figures, accepted to Phys. Rev. B; (new version: minor changes
    corecore