105 research outputs found

    Microstructural evolution of mechanically deformed polycrystalline silicon for kerfless photovoltaics

    Get PDF
    Silicon wafers for photovoltaics could be produced without kerf loss by rolling, provided sufficient control of defects such as dislocations can be achieved. A study using mainly high resolution electron backscatter diffraction (HR‐EBSD) of the microstructural evolution of Siemens polycrystalline silicon feedstock during a series of processes designed to mimic high temperature rolling is reported here. The starting material is heavily textured and annealing at 1400 °C results in 90% recrystallization and a reduction in average geometrically necessary dislocation (GND) density from >1014 to 1013 m−2. Subsequent compression at 1150 °C – analogous to rolling – produce sub‐grain boundaries seen as continuous curved high GND content linear features spanning grain interiors. Post‐deformation annealing at 1400 °C facilitates a secondary recrystallization process, resulting in large grains typically of 100 μm diameter. HR‐EBSD gives the final average GND density in as 3.2 × 1012 m−2. This value is considerably higher than the dislocation density of 5 × 1010 m−2 from etch pit counting, so the discrepancy is investigated by direct comparison of GND maps and etch pit patterns. The GND map from HR‐EBSD gives erroneously high values at the method's noise floor (≈1012 m−2) in regions with low dislocation densities

    Specimen preparation methods for elemental characterisation of grain boundaries and isolated dislocations in multicrystalline silicon using atom probe tomography

    Get PDF
    Multicrystalline silicon (mc-Si) is a cost effective feedstock for solar photovoltaic devices but is limited by the presence of defects and impurities. Imaging impurities segregated to nanometre-scale dislocations and grain boundaries is a challenge that few materials characterisation techniques can achieve. Atom Probe Tomography (APT) is a 3-dimensional time-of-flight microscopy technique that can image the distribution of elements at the atomic scale, however one of the most challenging factors when using APT is the complexity of specimen preparation for specific regions of interest. Atom probe specimen preparation methods have been developed in a dual FIB/SEM system that enable a specific extended defect such as an isolated dislocation or a section of a grain boundary to be selected for APT analysis. The methods were used to fabricate APT specimens from an isolated dislocation and a grain boundary in mc-Si samples. Complementary TEM images confirm the presence of the defects in both specimens, whilst APT analyses also reveal segregation of impurities to the defects

    To what extent is behaviour a problem in English schools?:Exploring the scale and prevalence of deficits in classroom climate

    Get PDF
    The working atmosphere in the classroom is an important variable in the process of education in schools, with several studies suggesting that classroom climate is an important influence on pupil attainment. There are wide differences in the extent to which classroom climate is considered to be a problem in English schools. Some ‘official’ reports suggest that behaviour in schools is ‘satisfactory or better’ in the vast majority of schools; other sources have pointed to behaviour being a serious and widespread problem. The paper details four studies conducted over the past decade which aimed to explore these disparities. The aim of the research was to gain a more accurate insight into the extent to which deficits in classroom climate limit educational attainment and equality of educational opportunity in English schools. The findings question the suggestion that behaviour is satisfactory or better in 99.7% of English schools and the concluding section suggests ways in which deficits in classroom climate might be addressed. Although the study is limited to classrooms in England, OECD studies suggest that deficits in the working atmosphere in classrooms occur in many countries. The study therefore has potential relevance for education systems in other countries

    Development and characterisation of a large diameter decellularised vascular allograft

    Get PDF
    The aims of this study were to develop a biological large diameter vascular graft by decellularisation of native human aorta to remove the immunogenic cells whilst retaining the essential biomechanical, and biochemical properties for the ultimate benefit of patients with infected synthetic grafts. Donor aortas (n = 6) were subjected to an adaptation of a propriety decellularisation process to remove the cells and acellularity assessed by histological analysis and extraction and quantification of total DNA. The biocompatibility of the acellular aortas was determined using standard contact cytotoxicity tests. Collagen and denatured collagen content of aortas was determined and immunohistochemistry was used to determine the presence of specific extracellular matrix proteins. Donor aortas (n = 6) were divided into two, with one half subject to decellularisation and the other half retained as native tissue. The native and decellularised aorta sections were then subject to uniaxial tensile testing to failure [axial and circumferential directions] and suture retention testing. The data was compared using a paired t-test. Histological evaluation showed an absence of cells in the treated aortas and retention of histoarchitecture including elastin content. The decellularised aortas had less than 15 ng mg¯¹ total DNA per dry weight (mean 94% reduction) and were biocompatible as determined by in vitro contact cytotoxicity tests. There were no gross changes in the histoarchitecture [elastin and collagen matrix] of the acellular aortas compared to native controls. The decellularisation process also reduced calcium deposits within the tissue. The uniaxial tensile and suture retention testing revealed no significant differences in the material properties (p > 0.05) of decellularised aorta. The decellularisation procedure resulted in minimal changes to the biological and biomechanical properties of the donor aortas. Acellular donor aorta has excellent potential for use as a large diameter vascular graft

    An SEM EBIC study of the electronic properties of dislocations in silicon

    No full text
    Individual, well structurally characterised dislocations present in n-type silicon have been studied using the electron beam induced current (EBIC) mode of an SEM.An EBIC system has been designed and constructed which includes i) phase sensitive detection, ii) computerised control of the experimental equipment and data capture and iii) a variable temperature SEM specimen stage. With this system measurements have been made of the EBIC contrast of individual segments of deformation induced dislocations produced by two stage compressive deformation at 850°C and 420°C.An experimental and theoretical analysis of EBIC signal generation in the Schottky barrier specimens used in this work is presented. This shows that the EBIC contrast measurements made may be directly correlated to the dislocation recombination strength.Contrast measurements have been made at temperatures in the range 120K to 370K and for electron beam currents from 6 x 10-12A to 2 x 10-9A. Several new effects have been observed. Minority carrier diffusion length measurements have also been performed in silicon containing dislocations. These show that the value obtained may depend upon experimental parameters used in a hitherto undetected manner.A new theory describing recombination of carriers at charged dislocations has been developed and this has been extended to provide a description of the variation of the EBIC contrast of dislocations with temperature, electron beam current and also the transient response of the EBIC contrast. Comparison of the theoretical predictions with the results gained experimentally shows full agreement for low temperatures or large beam currents. At high temperatures and small beam currents the theory shows the EBIC contrast will behave differently depending on the density of dislocation states present.Interpretation of the experimental results in terms of this theory allows some new insight to be gained for recombination at dislocations, and values for some of the parameters controlling recombination have been obtained.</p

    Data for 'Extremely low surface recombination in 1 Ωcm n-type monocrystalline silicon'

    No full text
    Data set embedded in Matlab figures representing the conductance-voltage spectra and interface state density (Dit) derived from it, effective lifetime (tau_eff) as a function minority carrier (Delta_n) and Surface potential, and surface recombination velocity and current calculated from lifetime data, as a function of injection level

    Getting connected - Improved bone implant interfaces

    No full text
    A study is performed on improving bone implant interfaces. The development of a new coating that offers improved performance for hip and other implants, and has the ability to carry bioactive materials to promote bone cell growth and proliferation is also discussed. The coating is based on hydroxyapatite and calcium phosphate and is deposited on the implant using high-temperature plasma spray technology

    Getting connected - Improved bone implant interfaces

    No full text
    A study is performed on improving bone implant interfaces. The development of a new coating that offers improved performance for hip and other implants, and has the ability to carry bioactive materials to promote bone cell growth and proliferation is also discussed. The coating is based on hydroxyapatite and calcium phosphate and is deposited on the implant using high-temperature plasma spray technology
    corecore