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Abstract  
Multicrystalline silicon (mc-Si) is a cost effective feedstock for solar photovoltaic devices but is limited 

by the presence of defects and impurities. Imaging impurities segregated to nanometre-scale 

dislocations and grain boundaries is a challenge that few materials characterisation techniques can 

achieve. Atom Probe Tomography (APT) is a 3-dimensional time-of-flight microscopy technique that 

can image the distribution of elements at the atomic scale, however one of the most challenging 

factors when using APT is the complexity of specimen preparation for specific regions of interest. Atom 

probe specimen preparation methods have been developed in a dual FIB/SEM system that enable a 

specific extended defect such as an isolated dislocation or a section of a grain boundary to be selected 

for APT analysis. The methods were used to fabricate APT specimens from an isolated dislocation and 

a grain boundary in mc-Si samples. Complementary TEM images confirm the presence of the defects 

in both specimens, whilst APT analyses also reveal segregation of impurities to the defects. 

Keywords: atom probe tomography; focused ion beam; grain boundaries; isolated dislocations; 

multicrystalline silicon  

 

1. Introduction 
The photovoltaic industry has in recent years been dominated by the use of multicrystalline silicon 

(mc-Si) solar cells, which offer substantial cost reduction compared to monocrystalline silicon bulk 

material. However, the presence of high densities of defects such as dislocations, grain boundaries 

(GB) and stacking faults in multicrystalline silicon leads to more possible recombination centres for 

electron-hole pairs created during operation, reducing the efficiency of the solar cell, from a record 

efficiency of 25.6% for single crystal silicon to a maximum of 21.25% for mc-Si1.  

The decrease in efficiency of mc-Si solar cells has been linked to the density of dislocations and 

impurities, and the segregation of impurity atoms such as Fe, Cr, Ni and Cu to them2. New mc-Si growth 
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methods have reduced the grain boundary density3and the dendrite casting method that induces 

<110> and <112> dendrite growth along the crucible bottom has also been demonstrated to grow 

large grains with a high number of electrically inactive Σ3 twin boundaries4 that also reduce the 

dislocation density.5 Nevertheless, recombination at dislocations and GBs still limits the efficiency of 

mc-Si solar cells. For many years, gettering has been used to remove transition metal impurities, in 

particular using phosphorus diffusion during high-temperature processing to draw the impurities to 

the phosphorus rich region forming metal rich precipitates at the surface. Whilst it has been 

demonstrated using bulk chemical characterisation techniques that increased metal content reduces 

cell efficiency6,7, characterising the distribution of these impurities to atomic-scale defects pre- and 

post-gettering remains a challenge. Whilst synchrotron-based nanoprobe X-ray fluorescence mapping 

has been able to image larger defects8, it can only obtain a resolution of 80 nm9, insufficient to image 

the distribution of impurity atoms on individual defects in mc-Si.  

In recent years atom probe tomography (APT) has become a valuable nanoscale characterisation tool 

for the development of new silicon-based semiconductor materials and devices, particularly as the 

scale of such devices shrink. For example, there are few techniques that can image the 3D chemical 

distribution across entire individual transistors10. The implementation of laser pulsing capabilities in 

atom probe instruments has been critical in opening up APT to a much wider range of semiconductor 

materials applications11. However, a concurrent advance in the development of site-specific Focused 

Ion Beam (FIB) based techniques12, to prepare the very sharp needle-shaped specimens required by 

APT, was equally important.   

The development of FIB/SEM dual-beam systems enables the combination of milling with the ion 

beam, and imaging with the electron beam, in order to fabricate atom probe specimens with a much 

greater degree of control over the final tip shape and location. The standard preparation method is 

the FIB lift-out technique, where a small piece of the sample is removed from the bulk sample, 

transferred to a support structure and sharpened into a needle12,1314.   

Numerous adaptations of the FIB lift-out process have been reported in the literature that allow APT 

specimens to be made from a specific region of interest (RoI). The characterisation of dopant and 

impurity segregation in silicon using APT has shown boron clusters at the intersection of grains15,16, 

nickel segregation to dislocation loops in ion-implanted silicon wafers17 and the segregation of P, As, 

C and O to grain boundaries in annealed multicrystalline silicon18. Recently an atom probe specimen 

preparation method developed by Stoffers and co-workers19 was able to demonstrate the ability to 

extract grain boundaries from mc-Si samples in a reproducible manner. This was achieved by adapting 

a TEM-based preparation method developed by Felfer et al20, where the specimen containing a grain 

boundary is lifted and mounted onto a TEM grid and imaged using a TEM to identify the position of 

the defect. The specimen is then returned to the FIB for final polishing to precisely position the grain 

boundary at the tip apex for APT analysis. However, in addition to the time-intensity of the process, 

since the grain boundary is located perpendicular to the field evaporation direction in the APT analysis, 

specimens fabricated using this approach only contain a small section of the grain boundary. This limits 

the probability of precipitates and individual dislocations in the analysis, which may be distributed 

along grain boundaries within the bulk material.  

Significantly, the Stoffers method is also only suitable for grain boundaries, rather than isolated 

dislocations. These defects are thought to play an important role in the segregation of undesirable 

impurities21 however, dislocations are much more widely distributed and are generally thought to be 

a more important limiting factor in cell efficiency5. Hence it is critical to have a specimen preparation 

technique with the ability to identify, select and incorporate specific isolated dislocations for APT 

analysis. Using the traditional top-down liftout method to obtain an isolated dislocation in the analysis 
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volume is extremely challenging. This is because the dislocation does not necessarily extend vertically 

down from the surface, and also the annular milling to create the needle specimen can result in 

etching away the desired feature.  

This paper presents in detail two novel atom probe specimen preparation methods, based on a 

rotated form of the lift-out technique, for extracting isolated dislocations and grain boundaries from 

mc-Si subjected to different processing conditions.  Complementary TEM was carried out to confirm 

the feature of interest was present in the fabricated specimen prior to APT analysis. Finally, the 

resulting APT reconstructions demonstrate the effectiveness of the techniques developed, to facilitate 

the characterisation of the mc-Si microstructure. The selective nature of this approach can also be 

combined with other characterisation such as electron beam induced current (EBIC) to link the 

structure and chemical segregation of a defect to its electrical activity. Although this paper 

demonstrates the method for the analysis of mc-Si, the specimen preparation methods described here 

could also be used to isolate and analyse individual selected dislocations and grain boundaries in other 

materials which have dislocations oriented roughly perpendicular to the sample surface. 

2. Materials and Methods 
This study examined p-type mc-Si wafers produced by REC Solar. Samples were taken from the top 

region of a commercial ingot produced by directional solidification, and subsequently diced into 5mm 

square pieces.  

For the purpose of proving that APT can successfully image dislocations at grain boundaries, a wafer 

of mc-Si was intentionally contaminated with gold. The sample was mechanically polished using 8, 1 

and 0.25 micron polishing pads to remove saw damage regions, followed by chemo-mechanically 

polishing using a Chem-H polishing pad. Surface contaminants and oxide were removed using RCA and 

HF cleans respectively.  A ~50 nm layer of gold was deposited on the surface, followed by annealing in 

argon gas at 1000 °C for one hour and oil quenching, which is predicted to produce a gold 

concentration near the wafer surface greater than ~50% of its solid solubility value of ~1016 

atoms/cm3.22 

In order to analyse the segregation of impurities to dislocations after gettering, Phosphorus Diffusion 

Gettering (PDG) was performed on another mc-Si specimen, which was annealed at 875 °C for 22 min 

in the presence of 650 sccm POCl3, 500 sccm O2 and 13.5 SLPM N2. Subsequently the POCl3 and O2 

flows were turned off and the specimen was cooled to 800°C in an N2 atmosphere at a rate of 10 

°C/min, before removing the specimen from the furnace and cooling to room temperature. Prior to 

FIB analysis, the phosphorus silicate glass and phosphorus-rich region at the surface were removed by 

exposure to hot hydrochloric acid for ten minutes followed by two hours of chemo-mechanical 

polishing.  

FIB liftouts were carried out in a Zeiss NVision 40 FIB-SEM system. Defects were lifted-out of the bulk 

sample using an in-situ Kleindiek nano-manipulator. A gas-injector was used in conjunction with SEM 

and FIB to deposit carbon and/or tungsten to protect the sample from Ga+ damage and weld the liftout 

to the manipulator. An Omiprobe© lift-out grid containing five copper posts was used as a support 

structure for mounting the sample and mounted in a dedicated holder, as previously demonstrated 

by Felfer et al14. FIB milling was undertaken using an accelerating voltage of 30 kV, with the exception 

of a final polishing step at 5 kV. The support structure during wedge attachment and preparation was 

positioned such that the copper posts are normal to the SEM column axis. During Specimen 

sharpening, the grid was held at 54⁰ tilt such that the copper posts are parallel to the FIB column axis.  
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TEM images of the specimens were taken in bright field mode in a double-tilt holder Philips JEOL 

2000FX microscope at an accelerating voltage of 200 kV. After characterisation in the TEM, APT 

analysis was carried out using a Cameca LEAP 3000X HR equipped with an energy-compensated 

reflectron, and an ultra-high frequency laser which operates at the wavelength of 532 nm. 

Experiments were performed in an ultra-high vacuum environment of better than 3x10-11 Torr, and 

cooled to a specimen temperature of 50 K. APT analyses were carried out using a 0.5 nJ laser beam 

energy, 0.3% evaporation rate and 160 kHz pulse frequency. 

3. The specimen preparation procedure 

3.1 Defect marking techniques 
Prior to FIB processing, preferential etching of the sample is required so that extended defects are 

observable via SEM. The bulk silicon sample is mechanically and chemo-mechanically polished to 

create a smooth surface, and surface contaminants removed using the standard RCA cleaning 

procedure23. In the final step, the sample is submerged in a Secco etch ((49%)HF:(0.05M)K2Cr2O7 at a 

ratio of 1:2) at 20 °C for 30 sec, resulting in pits at the surface that highlight the position of dislocations 

and GBs. The size and geometry of the pits depends on the etch conditions used. These conditions 

were optimised to produce etched features with an approximate average width of 100nm and depth 

of 170nm. This leaves a GB or dislocation far enough below the material surface to reliably retain in 

the final APT specimen needle.  

Figure 1 shows a schematic of the overall liftout process. First, a dislocation pit is identified and marked 

with a tungsten dot and a layer of carbon to protect it from subsequent damage from the gallium 

beam. Then, the sample is cut into a wedge using the FIB and lifted out using a nanomanipulator, 

before mounting onto a TEM half-grid. The key difference with a traditional liftout is that as in Figure 

1 (c), the liftout is mounted in a different orientation. Typically in a standard APT liftout, the original 

surface of the material remains facing upwards in the final needle, whereas in this method the wedge 

is mounted side-on to the TEM grid such that the original surface is perpendicular to the end of the 

needle. This is key as it allows the tungsten dot marking the dislocation to be observed during the final 

polishing of the needle (as in Figure 1(d) and (e)), enabling the user to place the dislocation at the very 

tip of the final needle used in APT analysis.  

 

Figure 1. Schematic of the atom probe lift out process. a) dislocation etch pit formed by SECCO etching, b) etch pit is filled 

by electron deposition tungsten and then a ion deposited carbon strip to protect from gallium damage, c) wedge containing 

dislocation is lifted out using FIB methods and welded horizontally onto a copper lift out grid, d) copper lift out grid is rotated 

to align with the FIB column, e) sample is annular milled into a sharp needle, with the dislocation present within 150nm of 

the tip. 

The procedure for marking an isolated dislocation is shown in more detail schematically in Figure 2 

(a), and for a grain boundary in Figure 2(b). Although etched defects can easily be observed in both 
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SEM and FIB, they are vulnerable to the ion beam in subsequent fabrication steps. Therefore, after 

transferring the sample into the FIB, the next step is to deposit tungsten/carbon onto the features, 

both for protection and to mark the location of the defects.  In the case of an isolated dislocation, a 

tungsten dot is deposited directly over an isolated dislocation via electron-beam, at 5 kV accelerating 

voltage and 30 μm objective aperture size. The result is a tungsten fiducial mark around 100 nm in 

diameter and 200 nm in height. Subsequently a 15x4x0.15 μm carbon protective layer is FIB beam 

deposited directly over the tungsten dot. Figure 2 (b) shows an isolated dislocation pit after the 

marking process. The tungsten dot lies in the centre of a carbon dome which provides additional 

resistance to FIB irradiation. 

 

Figure 2. (a) A schematic showing the defect marking procedure for the dislocation pit; and (b) is an SEM image showing a 
dislocation pit after the marking process. (c) defect marking procedure for the etched grain boundary; and (d) is an SEM image 
of a grain boundary after the marking process. 

A similar approach is employed for marking a specific section of a grain boundary, as shown in Figure 

2 (c). First, a line of tungsten is deposited to fill the etched cavity of the grain boundary. A low ion 

beam current of 1 pA is used in this step in order to reduce damage to the silicon below the etch pit. 

The length of the tungsten line is dependent on the length of the section of the grain boundary to be 

analysed. As before, a thin layer of carbon is applied over the tungsten marker using the FIB. An 

example of a grain boundary marked using this technique is shown in Figure 2 (d).  
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3.2 Wedge Lift-out and attachment 
Once the defect has been marked and protected, a cantilever is fabricated to prepare the region 

containing the defect for the lift-out. Due to the difference in mounting to the TEM post, the geometry 

of this cantilever varies from the traditional APT liftout12, as shown in Figure 3. First, a 2x32x5 µm 

undercut trench is created along the length of the carbon strip by milling a rectangular pattern at 45⁰ 

relative to the sample surface (a stage tilt of 9⁰). The sample is rotated by 180⁰ and the same step is 

repeated at the other side of the strip. A 10x2x5 µm vertical cut is then created at the end of the 

carbon strip to create a wedge of cantilever geometry for liftout. All the milling processes are 

performed with an ion beam current of 3 nA. The undercut trenches are repeated at a lower beam 

current of 300 pA to ensure that the bottom part of the wedge is completely detached from the bulk 

sample. Once a cantilever is fabricated, the loose end to wedge is attached to the nano-manipulator. 

A cut is then made and the wedge is lifted-out of the bulk sample.   

  

 

Figure 3 (a) The wedge is mounted to the copper post in an end-to-end manner. (b)–(d). Illustration of the procedure used to 
reinforce the attachment between the wedge and the copper post: (a) a rectangular hole is partially milled at the interface 
between the wedge and the post, marked by the dashed red rectangle; (b) the hole is filled with tungsten by FIB deposition; 
and (c) a tungsten bar is FIB-deposited parallel to the interface, marked by the dashed blue rectangle. 

Figure 3 (b-d) shows the methodology for welding the liftout to the TEM needle to ensure a robust 

connection able to survive the APT process. As the liftout bar is being mounted perpendicular to the 

TEM post, a traditional weld on either side of the triangular cross-section is not possible. Instead, a 

cross-shaped weld is used, where first a 700 pA cut is made into the centre of both the liftout and 

TEM needle and filled with tungsten, and then a second rectangular weld is made perpendicular to 

this first weld, at the interface between the two materials.  
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3.3 Wedge preparation 
The next stage is to remove material from the end of the wedge so that the defect of interest is within 

a few hundred nanometres of the end – i.e. within a volume suitable for APT analysis. The extent of 

this reduction depends on the defect type being analysed. For the isolated dislocation, the height of 

the wedge is gradually removed at a beam current of 80 pA until the edge is about 300–400 nm from 

the centre of the marker. This allows sufficient volume of the wedge that if the dislocation pit 

propagates towards the end of the wedge, it will remain within the final tip volume. Figure 4 (a) and 

(b) show the wedge before and after the removal process, respectively. For the grain boundary, the 

top section of the wedge was removed until it reached the tungsten line-marker, as illustrated in 

Figure 4 (c) and (d). 

 

Figure 4. SEM images showing a wedge containing a marked dislocation pit (a) before and (b) after excess height was 
removed. (c) and (d) show the same process for a grain boundary, with a section marked by a tungsten line. 

3.4 Specimen sharpening 
The specimen sharpening procedure is shown schematically in Figure for the isolated dislocation and 

Figure 6 (a) for a grain boundary.  For the isolated dislocation, first at 54⁰ tilt a rectangular pattern is 

applied to the front surface of the specimen, moving progressively in towards the specimen from the 

original surface until only a small portion of the dislocation pit can be observed, but the bottom of the 

tungsten fiducial mark is still visible. The wedge is then sharpened into an APT needle-shaped 

specimen by applying a series of annular milling patterns. The milling beam current is systematically 

decreased from 3 nA to 40 pA as the inner diameter of the annular milling pattern becomes smaller. 

In addition, the distances between the centres of the dislocation to the edges are measured after each 

annular milling step to ensure that the dislocation line intersects with the specimen once the needle 

is formed.  A 5 kV polish is then used to further sharpen the needle and minimise gallium damage at 

the surface of the specimen. 
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Figure 5 (a) A schematic illustration of the specimen sharpening process for an isolated dislocation: the first step is to remove 
the defect marking components and the majority of the dislocation pit by milling a rectangular pattern parallel to the marker 
surface. The wedge is then sharpened into an APT specimen by applying a series of annular milling patterns at various beam 
currents. (b) SEM images illustrating the specimen sharpening process for an isolated dislocation.  

The specimen sharpening procedure for the grain boundary is broadly similar, as illustrated in Figure 

6. First, a second fiducial tungsten dot is electron beam deposited at 0⁰ tilt on the triangular-shaped 

top surface of the wedge to mark the position of the end of the grain boundary. This gives two fiducial 

marks, one on the end of the wedge facing the FIB beam to aid with placement of the milling ring, and 

the second on the front face of the wedge facing the SEM column, so that the height of the defect can 

be monitored as the needle is sharpened, ensuring that the defect is within the APT analysis volume 

at the end of the sharpening procedure. The specimen is then tilted to 54⁰ and a similar rectangular 

cut is made at 80pA to the surface of the specimen to remove the tungsten line marking grain 

boundary, leaving behind only the tungsten dot. As before, the wedge is sharpened using an annular 

milling pattern at decreasing ion beam currents, with the pattern centre aligned with the tungsten 

dot. As noted previously, the direction of the grain boundary below the surface was not always 

perpendicular to the surface, and careful positioning of the annular milling pattern is necessary to 

ensure that the feature of interest remains in the volume in the final needle. 
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Figure 6. (a) A schematic illustration of the specimen sharpening process for a grain boundary. In the first step, a tungsten 
dot is deposited a small distance from the bottom of the grain boundary groove to mark the positon of the APT specimen’s 
tip. The second step is to remove the defect-marking components by milling a rectangular pattern parallel to the marker 
surface. Finally, the APT specimen is fabricated by applying a series of annular milling patterns at various beam currents, with 
their centres aligned with the tungsten dot. (b) illustrates a series of SEM images showing the specimen sharpening process 
for a grain boundary. 

Prior to APT analysis, the specimen is exposed to a low energy ion beam (5 kV 40 pA) to remove surface 

regions damaged by the ion beam during the previous steps12. The height of the specimen is usually 

reduced by about 100 nm by the low energy beam, but additional height can be removed if the 

extended defect is situated further down the specimen tip in order to ensure that it is within the 

analysed volume. This can be particularly advantageous when preparing specimens containing 

isolated dislocations. 
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4. Results and discussion 
Using the methods described in this paper, two APT specimens were fabricated, incorporating  a grain 

boundary and an isolated dislocation, respectively. The grain boundary specimen is extracted from a 

mc-Si sample that has been intentionally contaminated with gold. The isolated dislocation is taken 

from a mc-Si sample subjected to industrial standard phosphorus diffusion gettering (PDG). TEM 

images were taken prior to the low-energy ion beam cleaning stage.  

4.1 Grain boundary characterisation 
Figure 7 (a) shows a TEM composite of a specimen of gold-contaminated mc-Si containing a grain 

boundary running along the centre of the specimen; the grain to the right of the boundary appears to 

be darker than that to the left due to diffraction contrast, caused by the difference in their 

crystallographic orientation. Dark lines running at regular intervals along the grain boundary were 

observed when the specimen was rotated by 15° about the specimen axis, as shown in Figure 7 (b) 

and (c). These lines were found to disappear and reappear during the rotation and are only visible 

when the diffracting conditions in one or both grains are suitable to satisfy the g*b criterion, strongly 

indicating that these lines are dislocations 24.  

Figure 7 (d) and (e) show the APT atom maps from the same sample, displaying for the distribution of 

Ni, N and C atoms (for visual clarity elemental Si atoms are not shown). The APT analysis is shown in 

two orientations, with the grain boundary plane normal and parallel to the imaging plane, 

respectively. These images indicate that the segregation of these elements to the grain boundary and 

associated dislocations are visible in the APT reconstruction, even though no Au was detected at this 

particular defect. Note that the dislocations visible in the APT images are not necessarily the first 

dislocations visible in the TEM image in Figure 7(c), and that due to the field of view of APT not all of 

the width of the needle visible in TEM is shown in the APT image. Two characteristic distributions of 

chemical species were observed at the grain boundary; (i) the enrichment of C and Ni at the grain 

boundary; and (ii) the segregation of Ni, C, N, and O at three particular regions along the grain 

boundary. All of these solute atoms with the exception of Ni were only detected in the APT analysis in 

the form of complex ions, namely SiN, SiC and SiO. Nickel was detected both as individual Ni atoms as 

well as NiC complex ions.  
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Figure 7. (a). BF images of the APT specimen containing a grain boundary at (a) 0° tilt and (b) 15° tilt. (c): a high magnification 
BF image of the top section of the specimen in (b). (d) and (e) show atom maps of the APT specimen containing a grain 
boundary taken from the gold-contaminated mc-Si sample. The reconstructions were taken at two different angles with the 
grain boundary plane in (d) and (e) being normal and parallel to the imaging plane, respectively. In addition, (d) shows a 
uniform distribution of Ni (light green) and SiC (dark green) throughout the grain boundary. The reconstruction in (e) shows 
segregation of NiC (red) and SiN (blue) to linear features at three distinct locations (marked by orange arrows) on the grain 
boundary plane. 

4.2 Isolated dislocation characterisation 
A similar correlative analysis was performed using TEM and APT for a specimen with an isolated 

dislocation taken from mc-Si material following a PDG process. Figure 8 (a), shows a bright field TEM 

image of the specimen.  A dark dot is observed, with a bright region on one side of the dot and a dark 

region on the other side, which is similar to TEM images of edge dislocations25,26. In the subsequent 

APT reconstruction of the same specimen presented in Figure 8 (b) and (c), two spherical Ni clusters 

with a diameter ~10 nm are observed decorating the defect. The distance between these clusters from 

centre-to-centre is approximately 35 nm. As with the grain boundary sample in Figure 7, the higher 

magnification APT image shows a narrower tip than the TEM image due to the field of view of the 

LEAP instrument – as the tip gets wider, some of the outer regions of the shank are not visible in the 

APT data. The presence of Ni clusters after PDG is significant, suggesting that nickel atoms present at 

dislocations are resistant to gettering. Further study is required to characterise the significance of 

nickel clusters on the electrical properties of the material. 
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Figure 8. (a) BF TEM image of an APT specimen containing an isolated dislocation taken from the post-PDG mc-Si wafer. (b) 
and (c) Atom maps at different rotations of the post-PDG specimen showing two Ni clusters (green) decorating the along the 
dislocation line marked by dark purple carbon atoms. A limited number of Si atoms are shown to aid visual interpretation. 

The ability to observe and characterise such nanoscale impurities from lone dislocations proves the 

effectiveness of this advanced specimen preparation method. It would be significantly more difficult 

to intentionally characterise such a small isolated feature using the standard lift out method. Due to 

the large distances between each dislocation away from the GB in mc-Si, the chances of a random 

100x200 nm APT specimen containing such a feature without the etching, marking and precise 

annular milling steps shown here are extremely low. In addition, whilst segregation of impurities to 

mc-Si grain boundaries has previously been demonstrated using APT19, the orientation of the GB 
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perpendicular to the analysis direction using this method means that an increased length of the GB 

can be incorporated within a single APT analysis.  

5. Conclusions 
Atom Probe Tomography (APT) is an increasingly critical tool for characterising the chemistry of many 

materials at the atomic scale. In the case of small isolated defects, such as isolated dislocations in 

multicrystalline silicon, preparing a needle-shaped APT specimen with a tip radius of 50-100 nm whilst 

still retaining the region of interest at the tip apex is challenging. Novel specimen preparation methods 

for atom probe analysis of specifically selected defects were developed using a FIB-SEM dual beam 

system. The mc-Si material was etched using a Secco etch for a short period of time to expose etch 

pits where isolated dislocations and grain boundaries are present on the surface. 

The effectiveness of this site-specific FIB preparation method has been demonstrated for a grain 

boundary specimen in a mc-Si material contaminated with gold, and an isolated dislocation subjected 

to PDG contamination. Bright field TEM images were used prior to APT analysis to confirm the 

presence of defects in both specimens. Subsequent APT results showed it was possible to observe 

even very small decorations of impurities at these defects. Whilst this has been previously 

demonstrated for grain boundaries, the observation of two 10 nm Ni precipitates at the site of an 

isolated dislocation is unique to this preparation method and proves its effectiveness in successfully 

producing APT specimens containing individual defects on the nm scale within the apex of the 

specimen.  

This preparation method provides much more control over the region of interest studied, greatly 

increasing the amount of information that can be inferred about the nature of impurity diffusion to 

defects, and should be of significant benefit to materials characterisation of mc-Si. It is also 

applicable to many other materials, where the defect can be marked using a suitable etchant or 

other method, and therefore the grain boundary or individual dislocation can be lifted out using this 

method for atomic-scale characterisation using APT.  
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