455 research outputs found

    Investigating Microtopographic and Soil Controls on a Mountainous Meadow Plant Community Using High-Resolution Remote Sensing and Surface Geophysical Data

    Get PDF
    This study aims to investigate the microtopographic controls that dictate the heterogeneity of plant communities in a mountainous floodplain-hillslope system, using remote sensing and surface geophysical techniques. Working within a lower montane floodplain-hillslope study site (750 m × 750 m) in the Upper Colorado River Basin, we developed a new data fusion framework, based on machine learning and feature engineering, that exploits remote sensing optical and light detection and ranging (LiDAR) data to estimate the distribution of key plant meadow communities at submeter resolution. We collected surface electrical resistivity tomography data to explore the variability in soil properties along a floodplain-hillslope transect at 0.50-m resolution and extracted LiDAR-derived metrics to model the rapid change in microtopography. We then investigated the covariability among the estimated plant community distributions, soil information, and topographic metrics. Results show that our framework estimated the distribution of nine plant communities with higher accuracy (87% versus 80% overall; 85% versus 60% for shrubs) compared to conventional classification approaches. Analysis of the covariabilities reveals a strong correlation between plant community distribution, soil electric conductivity, and slope, indicating that soil moisture is a primary control on heterogeneous spatial distribution. At the same time, microtopography plays an important role in creating particular ecosystem niches for some of the communities. Such relationships could be exploited to provide information about the spatial variability of soil properties. This highly transferable framework can be employed within long-term monitoring to capture community-specific physiological responses to perturbations, offering the possibility of bridging local plot-scale observations with large landscape monitoring

    Observation of reduced thermal conductivity in a metal-organic framework due to the presence of adsorbates

    Get PDF
    Whether the presence of adsorbates increases or decreases thermal conductivity in metal-organic frameworks (MOFs) has been an open question. Here we report observations of thermal transport in the metal-organic framework HKUST-1 in the presence of various liquid adsorbates: water, methanol, and ethanol. Experimental thermoreflectance measurements were performed on single crystals and thin films, and theoretical predictions were made using molecular dynamics simulations. We find that the thermal conductivity of HKUST-1 decreases by 40 – 80% depending on the adsorbate, a result that cannot be explained by effective medium approximations. Our findings demonstrate that adsorbates introduce additional phonon scattering in HKUST-1, which particularly shortens the lifetimes of low-frequency phonon modes. As a result, the system thermal conductivity is lowered to a greater extent than the increase expected by the creation of additional heat transfer channels. Finally, we show that thermal diffusivity is even more greatly reduced than thermal conductivity by adsorption

    Hybridization from Guest-Host Interactions Reduces the Thermal Conductivity of Metal-Organic Frameworks

    Get PDF
    We experimentally and theoretically investigate the thermal conductivity and mechanical properties of polycrystalline HKUST-1 metal–organic frameworks (MOFs) infiltrated with three guest molecules: tetracyanoquinodimethane (TCNQ), 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4_{4}-TCNQ), and (cyclohexane-1,4-diylidene)dimalononitrile (H4_{4}-TCNQ). This allows for modification of the interaction strength between the guest and host, presenting an opportunity to study the fundamental atomic scale mechanisms of how guest molecules impact the thermal conductivity of large unit cell porous crystals. The thermal conductivities of the guest@MOF systems decrease significantly, by on average a factor of 4, for all infiltrated samples as compared to the uninfiltrated, pristine HKUST-1. This reduction in thermal conductivity goes in tandem with an increase in density of 38% and corresponding increase in heat capacity of ∌48%, defying conventional effective medium scaling of thermal properties of porous materials. We explore the origin of this reduction by experimentally investigating the guest molecules’ effects on the mechanical properties of the MOF and performing atomistic simulations to elucidate the roles of the mass and bonding environments on thermal conductivity. The reduction in thermal conductivity can be ascribed to an increase in vibrational scattering introduced by extrinsic guest-MOF collisions as well as guest molecule-induced modifications to the intrinsic vibrational structure of the MOF in the form of hybridization of low frequency modes that is concomitant with an enhanced population of localized modes. The concentration of localized modes and resulting reduction in thermal conductivity do not seem to be significantly affected by the mass or bonding strength of the guest species

    The distribution of pond snail communities across a landscape: separating out the influence of spatial position from local habitat quality for ponds in south-east Northumberland, UK

    Get PDF
    Ponds support a rich biodiversity because the heterogeneity of individual ponds creates, at the landscape scale, a diversity of habitats for wildlife. The distribution of pond animals and plants will be influenced by both the local conditions within a pond and the spatial distribution of ponds across the landscape. Separating out the local from the spatial is difficult because the two are often linked. Pond snails are likely to be affected by both local conditions, e.g. water hardness, and spatial patterns, e.g. distance between ponds, but studies of snail communities struggle distinguishing between the two. In this study, communities of snails were recorded from 52 ponds in a biogeographically coherent landscape in north-east England. The distribution of snail communities was compared to local environments characterised by the macrophyte communities within each pond and to the spatial pattern of ponds throughout the landscape. Mantel tests were used to partial out the local versus the landscape respective influences. Snail communities became more similar in ponds that were closer together and in ponds with similar macrophyte communities as both the local and the landscape scale were important for this group of animals. Data were collected from several types of ponds, including those created on nature reserves specifically for wildlife, old field ponds (at least 150 years old) primarily created for watering livestock and subsidence ponds outside protected areas or amongst coastal dunes. No one pond type supported all the species. Larger, deeper ponds on nature reserves had the highest numbers of species within individual ponds but shallow, temporary sites on farm land supported a distinct temporary water fauna. The conservation of pond snails in this region requires a diversity of pond types rather than one idealised type and ponds scattered throughout the area at a variety of sites, not just concentrated on nature reserves

    Observation of Binding and Rotation of Methane and Hydrogen within a Functional Metal-Organic Framework

    Get PDF
    The key requirement for a portable store of natural gas is to maximize the amount of gas within the smallest possible space. The packing of methane (CH<sub>4</sub>) in a given storage medium at the highest possible density is, therefore, a highly desirable but challenging target. We report a microporous hydroxyl-decorated material, MFM-300­(In) (MFM = Manchester Framework Material, replacing the NOTT designation), which displays a high volumetric uptake of 202 v/v at 298 K and 35 bar for CH<sub>4</sub> and 488 v/v at 77 K and 20 bar for H<sub>2</sub>. Direct observation and quantification of the location, binding, and rotational modes of adsorbed CH<sub>4</sub> and H<sub>2</sub> molecules within this host have been achieved, using neutron diffraction and inelastic neutron scattering experiments, coupled with density functional theory (DFT) modeling. These complementary techniques reveal a very efficient packing of H<sub>2</sub> and CH<sub>4</sub> molecules within MFM-300­(In), reminiscent of the condensed gas in pure component crystalline solids. We also report here, for the first time, the experimental observation of a direct binding interaction between adsorbed CH<sub>4</sub> molecules and the hydroxyl groups within the pore of a material. This is different from the arrangement found in CH<sub>4</sub>/water clathrates, the CH<sub>4</sub> store of nature

    Comparative phylogeography and asymmetric hybridization between cryptic bat species

    Get PDF
    This is the author accepted manuscript. The final version is available from Wiley via the DOI in this recordCryptic speciation and hybridization are two key processes that affect the origin and maintenance of biodiversity and our ability to understand and estimate it. To determine how these two processes interact, we studied allopatric and sympatric colonies of two cryptic bat species (Eptesicus serotinus and Eptesicus isabellinus) with parapatric distribution in the Iberian Peninsula. These species are the main reservoir for the most commonly rabies virus found in bats in Europe: the European bat Lyssavirus type 1 (EBLV‐1). We used mtDNA and nuclear microsatellite markers to confirm the taxonomic status of both species and to show a more pronounced and geographically based genetic structure in E. isabellinus than in its sibling E. serotinus. Using approximate Bayesian computation (ABC), we inferred rapid range expansion in both species after the Last Glacial Maximum until reaching their present distributions. ABC analysis also supported interspecific differences in genetic diversity and structure, pointing to an earlier expansion of E. isabellinus northward. We found no evidence of mitochondrial introgression between species, but nuclear markers identified a male‐mediated ongoing asymmetric hybridization from E. isabellinus to E. serotinus (28% hybrids in E. serotinus and 5% in E. isabellinus) in the contact zone. Although none of the bats studied tested positive for Lyssavirus RNA, the asymmetric hybridization supports the potential for the recently suggested interspecific transmission of EBLV‐1 from E. isabellinus into E. serotinus.Severo Ochoa ProgramMinisterio de Agricultura, Alimentación y Medio AmbienteConsejo Superior de Investigaciones CientíficasMinisterio de Ciencia e InnovaciónNatural Environment Research Council (NERC

    Bisphosphonate-Associated Osteonecrosis of the Jaw: Are We Dealing with a Localized Non-Traditional Calciphylaxis?

    Get PDF
    The bisphosphonate (BP) family of drugs has been used as a vital component in cancer therapy and many other diseases. One of the main adverse effects related to (BP) is BP-associated osteonecrosis of the jaw (ONJ). Although this condition was first recognized in 2003, the pathophysiologic mechanism remains undefined. Our hypothesis is that ONJs clinical course and delayed wound healing is in part correlated to a localized non-traditional calciphylaxis. This effect is identified by the evidence of calcium deposition in the connective tissue and around small blood vessels in the soft tissues immediately adjacent to ONJ lesions. This phenomenon helps to fill gaps in the cascade of events which leads to soft tissue ischemia, necrosis, and non-healing ONJ lesions. Our finding adds to the current knowledge of the potential pathophysiologic mechanisms related to ONJ
    • 

    corecore