985 research outputs found

    Aspects of Cooling at the TRIμ\muP Facility

    Full text link
    The Triμ\muP facility at KVI is dedicated to provide short lived radioactive isotopes at low kinetic energies to users. It comprised different cooling schemes for a variety of energy ranges, from GeV down to the neV scale. The isotopes are produced using beam of the AGOR cyclotron at KVI. They are separated from the primary beam by a magnetic separator. A crucial part of such a facility is the ability to stop and extract isotopes into a low energy beamline which guides them to the experiment. In particular we are investigating stopping in matter and buffer gases. After the extraction the isotopes can be stored in neutral atoms or ion traps for experiments. Our research includes precision studies of nuclear β\beta-decay through β\beta-ν\nu momentum correlations as well as searches for permanent electric dipole moments in heavy atomic systems like radium. Such experiments offer a large potential for discovering new physics.Comment: COOL05 Workshop, Galena, Il, USA, 18-23. Sept. 2005, 5 pages, 3 figure

    Non-Standard Neutrino Interactions from a Triplet Seesaw Model

    Full text link
    We investigate non-standard neutrino interactions (NSIs) in the triplet seesaw model featuring non-trivial correlations between NSI parameters and neutrino masses and mixing parameters. We show that sizable NSIs can be generated as a consequence of a nearly degenerate neutrino mass spectrum. Thus, these NSIs could lead to quite significant signals of lepton flavor violating decays such as \mu^- \to e^- \nu_e anti\nu_\mu and \mu^+ \to e^+ anti\nu_e \nu_\mu at a future neutrino factory, effects adding to the uncertainty in determination of the Earth matter density profile, as well as characteristic patterns of the doubly charged Higgs decays observable at the Large Hadron Collider.Comment: 4 pages, 3 figures and 1 table; v2: minor corrections, Sect. IV revise

    3-3-1 exotic quark search at CERN LEPII-LHC

    Get PDF
    The 3-3-1 electroweak model is the simplest chiral extension of the standard model which predicts single and double charged bileptons and exotic quarks carrying -4/3 and 5/3 units of the positron charge. In this paper we study the possibilities of the production and decay of one of these exotic quarks at CERN LEPII-LHC collider. For typical vector bilepton, exotic quark masses and mixing angles we obtained between 20 and 750 events per year. Angular distributions are also presented.Comment: 5 pages, RevTex 3.1, 9 eps figures, to appear in Phys. Rev.

    Precise Measurement of Magnetic Field Gradients from Free Spin Precession Signals of 3^{3}He and 129^{129}Xe Magnetometers

    Full text link
    We report on precise measurements of magnetic field gradients extracted from transverse relaxation rates of precessing spin samples. The experimental approach is based on the free precession of gaseous, nuclear spin polarized 3^3He and 129^{129}Xe atoms in a spherical cell inside a magnetic guiding field of about 400 nT using LTC_C SQUIDs as low-noise magnetic flux detectors. The transverse relaxation rates of both spin species are simultaneously monitored as magnetic field gradients are varied. For transverse relaxation times reaching 100 h, the residual longitudinal field gradient across the spin sample could be deduced to beBz=(5.6±0.4)|\vec{\nabla}B_z|=(5.6 \pm 0.4) pT/cm. The method takes advantage of the high signal-to-noise ratio with which the decaying spin precession signal can be monitored that finally leads to the exceptional accuracy to determine magnetic field gradients at the sub pT/cm scale

    Studies of the limit order book around large price changes

    Full text link
    We study the dynamics of the limit order book of liquid stocks after experiencing large intra-day price changes. In the data we find large variations in several microscopical measures, e.g., the volatility the bid-ask spread, the bid-ask imbalance, the number of queuing limit orders, the activity (number and volume) of limit orders placed and canceled, etc. The relaxation of the quantities is generally very slow that can be described by a power law of exponent 0.4\approx0.4. We introduce a numerical model in order to understand the empirical results better. We find that with a zero intelligence deposition model of the order flow the empirical results can be reproduced qualitatively. This suggests that the slow relaxations might not be results of agents' strategic behaviour. Studying the difference between the exponents found empirically and numerically helps us to better identify the role of strategic behaviour in the phenomena.Comment: 19 pages, 7 figure

    Production of Radioactive Nuclides in Inverse Reaction Kinematics

    Get PDF
    Efficient production of short-lived radioactive isotopes in inverse reaction kinematics is an important technique for various applications. It is particularly interesting when the isotope of interest is only a few nucleons away from a stable isotope. In this article production via charge exchange and stripping reactions in combination with a magnetic separator is explored. The relation between the separator transmission efficiency, the production yield, and the choice of beam energy is discussed. The results of some exploratory experiments will be presented.Comment: 10 pages, 4 figures, to be submitted to Nucl. Instr. and Met

    Spontaneous Symmetry Breaking in Two-Channel Asymmetric Exclusion Processes with Narrow Entrances

    Full text link
    Multi-particle non-equilibrium dynamics in two-channel asymmetric exclusion processes with narrow entrances is investigated theoretically. Particles move on two parallel lattices in opposite directions without changing them, while the channels are coupled only at the boundaries. A particle cannot enter the corresponding lane if the exit site of the other lane is occupied. Stationary phase diagrams, particle currents and densities are calculated in a mean-field approximation. It is shown that there are four stationary phases in the system, with two of them exhibiting spontaneous symmetry breaking phenomena. Extensive Monte Carlo computer simulations confirm qualitatively our predictions, although the phase boundaries and stationary properties deviate from the mean-field results. Computer simulations indicate that several dynamic and phase properties of the system have a strong size dependency, and one of the stationary phases predicted by the mean-field theory disappears in the thermodynamic limit.Comment: 13 page

    First Test of Lorentz Invariance in the Weak Decay of Polarized Nuclei

    Full text link
    A new test of Lorentz invariance in the weak interactions has been made by searching for variations in the decay rate of spin-polarized 20Na nuclei. This test is unique to Gamow-Teller transitions, as was shown in the framework of a recently developed theory that assumes a Lorentz symmetry breaking background field of tensor nature. The nuclear spins were polarized in the up and down direction, putting a limit on the amplitude of sidereal variations of the form |(\Gamma_{up} - \Gamma_{down})| / (\Gamma_{up} + \Gamma_{down}) < 3 * 10^{-3}. This measurement shows a possible route toward a more detailed testing of Lorentz symmetry in weak interactions.Comment: 11 pages, 6 figure

    Evidence of triggered star formation in G327.3-0.6. Dust-continuum mapping of an infrared dark cloud with P-ArT\'eMiS

    Get PDF
    Aims. Expanding HII regions and propagating shocks are common in the environment of young high-mass star-forming complexes. They can compress a pre-existing molecular cloud and trigger the formation of dense cores. We investigate whether these phenomena can explain the formation of high-mass protostars within an infrared dark cloud located at the position of G327.3-0.6 in the Galactic plane, in between two large infrared bubbles and two HII regions. Methods: The region of G327.3-0.6 was imaged at 450 ? m with the CEA P-ArT\'eMiS bolometer array on the Atacama Pathfinder EXperiment telescope in Chile. APEX/LABOCA and APEX-2A, and Spitzer/IRAC and MIPS archives data were used in this study. Results: Ten massive cores were detected in the P-ArT\'eMiS image, embedded within the infrared dark cloud seen in absorption at both 8 and 24 ?m. Their luminosities and masses indicate that they form high-mass stars. The kinematical study of the region suggests that the infrared bubbles expand toward the infrared dark cloud. Conclusions: Under the influence of expanding bubbles, star formation occurs in the infrared dark areas at the border of HII regions and infrared bubbles.Comment: 4 page

    Dynamical Gauge Symmetry Breaking in SU(3)LU(1)XSU(3)_L\otimes U(1)_X Extension of the Standard Model

    Full text link
    We study the SU(3)LU(1)XSU(3)_L\otimes U(1)_X extension of the Standard model with a strong U(1) coupling. We argue that current experiments limit this coupling to be relatively large. The model is dynamically broken to the Standard SU(2)LU(1)SU(2)_L \otimes U(1) model at the scale of a few TeV with all the extra gauge bosons and the exotic quarks acquiring masses much larger than the scale of electroweak symmetry breaking. Furthermore we find that the model leads to large dynamical mass of the top quark and hence also breaks the electroweak gauge symmetry. It therefore leads to large dynamical effects within the Standard model and can partially replace the Higgs interactions.Comment: 4 pages, revtex, no figures; revised version predicting realistic mass spectru
    corecore