16,778 research outputs found
Sticky information and sticky prices
In the U.S. and Europe, prices change somewhere between every six months and once a year. Yet nominal macro shocks seem to have real effects lasting well beyond a year. "Sticky information" models, as posited by Sims (2003), Woodford (2003), and Mankiw and Reis (2002), can reconcile micro flexibility with macro rigidity. We simulate a sticky information model in which price setters do not update their information on macro shocks as often as they update their information on micro shocks. Compared to a standard menu cost model, price changes in this model reflect older macro shocks. We then examine price changes in the micro data underlying the U.S. CPI. These price changes do not reflect older information, thereby exhibiting a similar response to that of the standard menu cost model. However, the empirical test hinges on staggered information updating across firms; it cannot distinguish between a full information model and a model where firms have equally old information.Prices
Real rigidities and nominal price changes
A large literature seeks to provide microfoundations of price setting for macro models. A challenge has been to develop a model in which monetary policy shocks have the highly persistent effects on real variables estimated by many studies. Nominal price stickiness has proved helpful but not sufficient without some form of "real rigidity" or "strategic complementarity." We embed a model with a real rigidity a la Kimball (1995), wherein consumers flee from relatively expensive products but do not flock to inexpensive ones. We estimate key model parameters using micro data from the U.S. CPI, which exhibit sizable movements in relative prices of substitute products. When we impose a significant degree of real rigidity, fitting the micro price facts requires very large idiosyncratic shocks and implies large movements in micro quantities.Prices ; Pricing
A dc to dc converter
The object of the invention is to provide an improved converter for converting one direct current voltage to another. A plurality of phased square wave voltages are provided from a ring counter through amplifiers to a like plurality of output transformers. Each of these transformers has two windings, and S(1) winding and an S(2) winding. The S(1) windings are connected in series, then the S(2) windings are connected in series, and finally, the two sets of windings are connected in series. One of six SCRs is connected between each two series connected windings to a positive output terminal and one of diodes is connected between each set of two windings of a zero output terminal. By virtue of this configuration, a quite high average direct current voltage is obtained, which varies between full voltage and two-thirds full voltage rather than from full voltage to zero. Further, its variation, ripple frequency, is reduced to one-sixth of that present in a single phase system. Application to raising battery voltage for an ion propulsion system is mentioned
New Coordinates for the Amplitude Parameter Space of Continuous Gravitational Waves
The parameter space for continuous gravitational waves (GWs) can be divided
into amplitude parameters (signal amplitude, inclination and polarization
angles describing the orientation of the source, and an initial phase) and
phase-evolution parameters. The division is useful in part because the
Jaranowski-Krolak-Schutz (JKS) coordinates on the four-dimensional amplitude
parameter space allow the GW signal to be written as a linear combination of
four template waveforms with the JKS coordinates as coefficients. We define a
new set of coordinates on the amplitude parameter space, with the same
properties, which is more closely connected to the physical amplitude
parameters. These naturally divide into two pairs of Cartesian-like coordinates
on two-dimensional subspaces, one corresponding to left- and the other to
right-circular polarization. We thus refer to these as CPF (circular
polarization factored) coordinates. The corresponding two sets of polar
coordinates (known as CPF-polar) can be related in a simple way to the physical
parameters. We illustrate some simplifying applications for these various
coordinate systems, such as: a calculation of Jacobians between various
coordinate systems; an illustration of the signal coordinate singularities
associated with left- and right-circular polarization, which correspond to the
origins of the two two-dimensional subspaces; and an elucidation of the form of
the log-likelihood ratio between hypotheses of Gaussian noise with and without
a continuous GW signal. These are used to illustrate some of the prospects for
approximate evaluation of a Bayesian detection statistic defined by
marginalization over the physical parameter space. Additionally, in the
presence of simplifying assumptions about the observing geometry, we are able
to explicitly evaluate the integral for the Bayesian detection statistic, and
compare it to the approximate results.Comment: REVTeX, 18 pages, 8 image files included in 7 figure
Static inverters which sum a plurality of waves Patent
Describing static inverter with single or multiple phase outpu
Towards the graviton from spinfoams: higher order corrections in the 3d toy model
We consider the recent calculation gr-qc/0508124 of the graviton propagator
in the spinfoam formalism. Within the 3d toy model introduced in gr-qc/0512102,
we test how the spinfoam formalism can be used to construct the perturbative
expansion of graviton amplitudes. Although the 3d graviton is a pure gauge, one
can choose to work in a gauge where it is not zero and thus reproduce the
structure of the 4d perturbative calculations. We compute explicitly the next
to leading and next to next to leading orders, corresponding to one-loop and
two-loop corrections. We show that while the first arises entirely from the
expansion of the Regge action around the flat background, the latter receives
contributions from the microscopic, non Regge-like, quantum geometry.
Surprisingly, this new contribution reduces the magnitude of the next to next
to leading order. It thus appears that the spinfoam formalism is likely to
substantially modify the conventional perturbative expansion at higher orders.
This result supports the interest in this approach. We then address a number
of open issues in the rest of the paper. First, we discuss the boundary state
ansatz, which is a key ingredient in the whole construction. We propose a way
to enhance the ansatz in order to make the edge lengths and dihedral angles
conjugate variables in a mathematically well-defined way. Second, we show that
the leading order is stable against different choices of the face weights of
the spinfoam model; the next to leading order, on the other hand, is changed in
a simple way, and we show that the topological face weight minimizes it.
Finally, we extend the leading order result to the case of a regular, but not
equilateral, tetrahedron.Comment: 24 pages, many figure
Electron spin relaxation in organic semiconductors probed through muSR
Muon spin spectroscopy and in particular the avoided level crossing technique
is introduced, with the aim of showing it as a very sensitive local probe for
electron spin relaxation in organic semiconductors. Avoided level crossing data
on TMS-pentacene at different temperatures are presented, and they are analysed
to extract the electron spin relaxation rate, that is shown to increase on
increasing the temperature from 0.02 MHz to 0.33 MHz at 3 K and 300 K
respectively.Comment: International Conference TSN2010 "Trends in spintronics and
nanomagnetism
Chemical Bonding Technology: Direct Investigation of Interfacial Bonds
This is the third Flat-Plate Solar Array (FSA) Project document reporting on chemical bonding technology for terrestrial photovoltaic (PV) modules. The impetus for this work originated in the late 1970s when PV modules employing silicone encapsulation materials were undergoing delamination during outdoor exposure. At that time, manufacturers were not employing adhesion promoters and, hence, module interfaces in common with the silicone materials were only in physical contact and therefore easily prone to separation if, for example, water were to penetrate to the interfaces. Delamination with silicone materials virtually vanished when adhesion promoters, recommended by silicone manufacturers, were used. The activities related to the direct investigation of chemically bonded interfaces are described
- …