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1 Introduction

Many studies estimate that monetary policy shocks have persistent effects on real output

– effects lasting well beyond a year. For a sampling of estimates, each using a different

identification strategy, see Christiano, Eichenbaum and Evans (1999), Romer and Romer

(2003), and Bernanke, Boivin and Eliasz (2004).

In terms of theoretical microfoundations, one way of obtaining real effects of nominal

shocks is, of course, nominal price rigidity. In recent quantitative treatments, however,

the real effects of nominal price stickiness do not last much longer than the average du-

ration of a price. Chari, Kehoe and McGrattan (2000) examine time-dependent models

in the spirit of Taylor (1980). Golosov and Lucas (2003) characterize a state-dependent

model, i.e., a model with fixed “menu costs” of changing prices and endogenous tim-

ing of price changes. Dotsey, King and Wolman (1999) investigate a hybrid of Calvo’s

(1983) time-dependent model and a conventional state-dependent model in that menu

cost shocks influence the timing of re-pricing.

The recent micro empirical literature, meanwhile, finds that nominal prices typically

change at least once per year. Bils and Klenow (2004) and Klenow and Kryvtsov (2005)

report that U.S. consumer prices change every six months or so, on average. Dhyne et

al. (2005), surveying a spate of recent studies, conclude that Euro Area prices typically

change around once per year. Similarly, Taylor (1999) summarized the earlier evidence

as saying prices change once a year on average.

Putting the micro evidence together with the quantitative theory, nominal rigidity,
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by itself, appears unable to generate the persistent non-neutrality seen in the aggregate

data. This failure has rekindled interest in combining nominal rigidities with “real

rigidities”, i.e., ingredients that makes firms reluctant to change their relative prices. Ball

and Romer (1990) emphasized the need for such real rigidities on top of nominal rigidities

to generate realistic persistence. These real rigidities, sometimes also called “strategic

complementarities,” can be on the factor supply side or on the goods demand side.

Examples on the factor supply side include the real wage rigidities modeled recently by

Blanchard and Gali (2005), and the firm-specific inputs suggested by Rotemberg (1996)

and pursued by Woodford (2003), Altig, Christiano, Eichenbaum and Linde (2005), and

Gertler and Leahy (2005). Alternatively, real rigidities could be on the preference side,

as proposed by Kimball (1995) and used recently by Eichenbaum and Fisher (2004) and

Dotsey and King (2005).

In this paper we focus on the Kimball-style real rigidity because it is capable of gen-

erating an arbitrary amount of persistence. Under Kimball’s preferences, the elasticity

of substitution between a given variety and others is decreasing in the relative quantity

consumed of the variety. Thus sellers face a price elasticity of demand that is increasing

in their good’s relative price. In contrast to the Dixit-Stiglitz world of a constant elas-

ticity and a constant desired markup of price over marginal cost, in Kimball’s world the

desired markup is decreasing in the relative price. When a re-pricing firm faces a higher

marginal cost, say due to higher wages in the wake of monetary stimulus, the firm will

temper its price increase because of the endogenous drop in its desired markup. The
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lack of coordination is critical in this story, as it means a re-pricing seller will be raising

its relative price. Each round of re-pricing is more tentative under Kimball’s preferences,

so that it takes longer for a monetary shock to fully pass through to the average price

level.

As Dotsey and King (2005) and Basu (2005) discuss, Kimball’s specification creates

a smoothed version of a “kink” in the demand curve facing a given firm. Consumers

flee from individual items with high relative prices, but do not flock to individual items

with low relative prices. The result is that profits decline more steeply around a relative

price of one. This is what creates “rigidity” in the relative price a firm wants.

We investigate the compatibility of the Kimball real rigidity with patterns of nominal

and relative price changes in the micro data collected by the U.S. Bureau of Labor Statis-

tics (BLS) for the Consumer Price Index (CPI). In this data, nominal prices changes are

much larger than needed to keep up with overall inflation, as stressed by Golosov and

Lucas (2004). Given little synchronization, these large changes in nominal prices trans-

late into big movements in relative prices, suggesting firms face important idiosyncratic

shocks to their marginal cost and/or desired markup.

Embedding Kimball’s real rigidity in an industry equilibrium model, we assess how

large the idiosyncratic shocks must be in order to rationalize the observed changes in

relative prices. Given the degree of real rigidity suggested by Kimball (1995) and used by

Eichenbaum and Fisher (2004), we find that the model requires very large idiosyncratic

shocks (on the order of 35% per month to item-specific productivity), with concomitant
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changes in item-specific quantities (including prices that entirely eclipse demand in about

20% of simulated months).

The rest of the paper is organized as follows. In section 2 we write down an industry

equilibrium model that combines Kimball preferences with firm pricing decisions in the

face of fixed menu costs. In section 3 we briefly describe the CPI microdata. In sec-

tion 4 we estimate the model’s parameters under different assumed levels of Kimball’s

superelasticity (the elasticity of the elasticity of demand). In section 5 we conclude.

2 Model

The model is a variant of the standard monopolistic competition model, and it describes

optimal pricing behavior within a particular sector of the economy.1 To explore the role

of real rigidities, we adapt the standard model to include a flexible variety aggregator a

la Kimball (1995).

2.1 Consumers

A representative agent consumes goods and provides labor for production. The economy

has S sectors with each sector containing ns producers. The representative agent chooses

consumption of goods across all sectors and all producers {{Csi}
ns

i=1
}

S

s=1
. The agent

derives utility from consumption of sectoral composite goods which are created by the

costless aggregation of goods within each sector.

1See Blanchard and Fischer (1994).
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Each sectoral composite good Cs is created using the following Kimball preferences:

1

ns

ns
∑

i=1

Υ

(

nsCsi

Cs

)

= 1, (1)

where Υ(1) = 1, Υ′ > 0, and Υ′′ < 0. The Kimball formulation features an elasticity

of substitution decreasing in x, the relative quantity consumed of the item. CES pref-

erences, which are used in the standard model of monopolistic competition, are nested

within this specification.2 More generally, Cs may be defined only implicitly by (1).

The representative agent chooses consumption and labor (L) to maximize utility

U = max
{{Csi}

ns
i=1}

S

s=1

1

1 − σ

(

S
∏

s=1

(

Cs

αs

)αs

)1−σ

+
ν (1 − L)

1 − σ
, (2)

subject to equation (1) and the budget constraint

S
∑

s=1

ns
∑

i=1

PsiCsi = w̃L + Π, (3)

where αs is the Cobb-Douglas preference parameter for the composite good of sector s,

w̃ is the nominal wage rate, and Π are the agent’s profits from producers. We assume

that the sectoral shares sum to 1,
∑S

s=1
αs = 1. The assumption of costless aggregation

of composite goods from each sector provides an additional constraint relating the cost

2The Kimball specification reduces to CES preferences if Υ(x) = x
θ−1

θ , where θ is the elasticity of
substitution between items.
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of the sectoral composite to the cost of individual goods within that sector:

PsCs =

ns
∑

i=1

PsiCsi, (4)

where Ps is the price of the sectoral good.

Since there is no saving in this economy, all income will be spent on purchases of

goods. Based on first order conditions for consumption, the representative agent will

spend a constant share of nominal income on goods from sector s:

αs =
PsCs

PY
. (5)

PY is the nominal value of all goods produced in the economy, which also satisfies

PY = w̃L + Π.

We use the first order conditions to derive the following relative demand for good

Csj:

nsCsj

Cs

= Υ′−1

(

Psj

Ps

ns
∑

i=1

Csi

Cs

Υ′

(

nsCsi

Cs

)

)

. (6)

To simplify notation, we define the following:

ϕ(x) ≡ Υ′−1

(x) (7)

Ds ≡

ns
∑

i=1

Csi

Cs

Υ′

(

nsCsi

Cs

)

. (8)

7



Using these definitions, the relative demand function can now be expressed as

nsCsj

Cs

= ϕ

(

Psj

Ps

Ds

)

. (9)

2.2 Producers

Each firm in sector s produces a differentiated good and is monopolistically competitive.

Producers are assumed to meet all demand, implying that Ysi = Csi. Given the demand

function for their goods, they set their price to maximize profits. To implement a price

change, firms must pay a labor cost of φ̃.

Contemporaneous profits, excluding the implementation cost, are

Π̃si = PsiYsi − w̃Lsi. (10)

The producer faces the demand function given by (9) and the following production

function:

Ysi = ZsAsiL
η
si, (11)

where Zs is a sectoral productivity index, Asi is an idiosyncratic (to the firm) produc-

tivity index, and η parameterizes the returns to scale of production.

We normalize firm profits by the portion of (smoothly-growing) nominal GDP con-

tributed by the average firm in sector s (αsPY/ns) and substitute in the demand function
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to arrive at

Πsi =
Psi

Ps

ϕ

(

Psi

Ps

Ds

)

−
nsw

αs

Lsi, (12)

where w = w̃
PY

. Note that consumer utility maximization implies that αs equals the

nominal output share for sector s, αs = PsYs

PY
.

The amount of labor, Lsi, required to meet demand is derived by substituting (9)

into (11):

Lsi =
1

ns

A
−1

η

si

(

nη−1
s Ys

Zs

)
1

η
(

ϕ

(

Psi

Ps

Ds

))
1

η

. (13)

Contemporaneous profits can then be expressed as

Πsi =
Psi

Ps

ϕ

(

Psi

Ps

Ds

)

− wA
−1

η

si ζs

(

ϕ

(

Psi

Ps

Ds

))
1

η

, (14)

where ζs ≡
1

αs

(

n
η−1

s Ys

Zs

)
1

η

is what we will call the “sectoral output-productivity ratio.”

2.3 Menu Costs

Firms choosing to adjust their price in a given period will be faced with an adjustment

cost. To implement a price change, a firm in sector s must hire φ̃s units of labor at the

going wage w̃. Expressed relative to nominal output per firm in sector s, this adjustment
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cost is φs ≡
nsw̃

αsPY
φ̃s. Normalized profits, net of implementation costs, are therefore

Πsi =
Psi

Ps

ϕ

(

Psi

Ps

Ds

)

− wA
−1

η

si ζs

(

ϕ

(

Psi

Ps

Ds

))
1

η

− φs. (15)

Note that these normalized profits will be stationary because they involve only relative

prices and quantities, the idiosyncratic productivity process will be stationary, and the

menu cost is expressed relative to average firm revenue in the sector.

2.4 Dynamic Optimization

Given the implementation cost of a price change, the firm solves a dynamic optimization

problem to maximize profits. In each period the firm decides whether or not to adjust

its price. If it decides to adjust, it pays an implementation cost and resets its price.

If it does not adjust, its nominal price remains fixed, and its relative price, psi = Psi

Ps
,

decreases at the rate of sectoral inflation. As noted, we assume that the nominal output

of the economy, PY , is growing at a constant rate. Sectoral inflation rates, however,

will be buffeted about by shocks to the sectoral technology index Zs.

The state variables for the firm’s optimization problem are the firm’s relative price

at the end of the previous period (psi,−1), the growth rate of the sectoral technology

index (gZs), the sectoral inflation rate (πs), the sectoral output-productivity ratio (ζs),

the idiosyncratic productivity index (Asi), and the information set Ω used to form future

expectations.

Given these state variables, S = {psi,−1, gZs, πs, ζs, Asi, Ω}, the firm maximizes the
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value function

V (S) = max(V C(S), V NC(S)), (16)

where V C(S) represents the firm’s value if it changes its price and V NC(S) represents

its value if it does not change its price. These value functions, in turn, are

V C(S) = max
psi

{

psiϕ (psiDs) − wA
−1

η

si ζs (ϕ (psiDs))
1

η − φs + ES′|S [βV (S ′)]

}

, (17)

with S ′ = {psi, g
′
Zs

, π′
s, ζ

′
s, A

′
si, Ω

′}, and

V NC(S) =
psi,−1

1 + πs

ϕ

(

psi,−1

1 + πs

Ds

)

− wA
−1

η

si ζs

(

ϕ

(

psi,−1

1 + πs

Ds

))
1

η

+ ES′|S [βV (S ′)] (18)

with S ′ = {
psi,−1

1+πs
, g′

Zs
, π′

s, ζ
′
s, A

′
si, Ω

′}. The parameter β is the discount factor, appropri-

ately adjusted for the rescaling of the problem in terms of profits relative to growing

nominal GDP.

In order to solve this optimization problem, each firm must be able to form ex-

pectations over the state variables in the subsequent period. Based on the consumer’s

optimization problem, each sector’s nominal output share is constant: αs = PsYs

PY
. The

assumption that the nominal output of the economy is growing at a constant rate there-

fore implies that the sectoral level of nominal output is also growing at a constant rate.

Since all firms know this constant growth rate, they only need to compute a forecast of

one of the sectoral aggregates (inflation or real output growth) and then they can back
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out the implied forecast of the other. Here we will describe forecasts of inflation.

In the spirit of Krusell and Smith (1998), we assume each firm forecasts next period’s

inflation using the following linear forecasting rule:

πf
s,t+1 = α0 + α1πs,t + α2 log ζs,t + α3gZs,t + επs,t, ε ∼ N(0, σ2

επs
), (19)

where the residual is assumed to be orthogonal to the other right-hand-side variables.

The “regressors” are all state variables in firms’ information sets at time t. A firm’s

idiosyncratic shock is not included because the price setting behavior of a single firm

should not affect the sectoral inflation rate. Because of the error term, firms are not sim-

ply using a point forecast for next period’s inflation, but rather are taking into account

the distribution of next period’s inflation conditional on this period’s observables.

Given their forecast for next period’s inflation rate, firms can derive expectations for

the sectoral output-productivity ratio, ζs,t+1. First, they will back out the forecast of

sectoral output growth:

gf
Ys,t+1

= gPY − πf
s,t+1. (20)

Second, they will compute the forecasted value of ζs,t+1, shown here in log-levels,

log ζf
s,t+1 = log ζs,t +

1

η
gf

Ys,t+1
−

1

η
gf

Zs,t+1
, (21)

based on their forecast of gZs,t+1.
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Regarding the exogenous processes, we assume that the idiosyncratic productivity

index follows a log-normal autoregressive process:

log Asi,t+1 = ρA log Asi,t + εA,t+1, ε ∼ N(0, σ2
εA

). (22)

We assume that the growth rate of the sectoral technology index follows a normal au-

toregressive process:

gZs,t+1 = µgZs
+ ρgZs

gZs,t + εgZs ,t+1, ε ∼ N(0, σ2
εgZs

). (23)

2.5 Modeling expectations of sectoral inflation and output growth

In order to compute expectations of sectoral inflation and output growth, we will set up

a three-variable VAR(1) using the sectoral state variables:

















πf
s,t+1

log ζf
s,t+1

gZs,t+1

















= A0 + A1

















πs,t

log ζs,t

gZs,t

















+ ξt+1. (24)

We assume that ξt+1 is not known until after all pricing decisions are made in period t.

With a little manipulation, we can convert (19), (20), (21), and (23) into the following
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VAR system:

πf
s,t+1 = a0 + a1πs,t + a2 log ζs,t + a3gZs,t + επ,t+1 (25)

log ζf
s,t+1 =

gPY − a0 − µgZs

η
−

a1

η
πs,t +

η − a2

η
log ζs,t −

a3 + ρgZs

η
gZs,t (26)

−
1

η
επ,t+1 −

1

η
εgZs ,t+1

gZs,t+1 = µgZs
+ ρgZs

gZs,t + εgZs ,t+1 (27)

where

a0 = (1 − a1)πss − a2 log(αs) − a3

µgZs

1 − ρgZs

. (28)

2.6 Kimball aggregator

In order to explore the role of real rigidities, we have selected a flexible function for

the aggregator Υ(x). Recall that x is the relative quantity consumed of an individual

variety. Our function is parsimoniously governed by two parameters, {θ̄, ε̄}:

Υ(x) = 1 +
(

θ̄ − 1
)

exp

(

1

ε̄

)

ε̄
θ̄
ε̄
−1

(

Γ

(

θ̄

ε̄
,
1

ε̄

)

− Γ

(

θ̄

ε̄
,
x

ε̄
θ̄

ε̄

))

(29)

where Γ (u, z) is the incomplete gamma function

Γ (u, z) ≡

∫ ∞

z

su−1e−sds. (30)
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This function is a generalization of the CES aggregator, ΥCES. In the limit as ε̄ → 0,

then Υ → ΥCES.

The solution to the model derived above depends on the derivative and the inverse

of the derivative of Υ:

Υ′ (x) =
θ̄ − 1

θ̄
exp

(

1 − x
ε̄
θ̄

ε̄

)

(31)

ϕ (x) ≡ (Υ′)
−1

(x) =

(

1 + ε̄ ln

(

θ̄ − 1

θ̄x

))

θ̄
ε̄

. (32)

With our functional form for ΥCES, the price elasticity of demand for a given variety

can vary with the variety’s relative price. The elasticity is

θ (x) ≡ −
Υ′ (x)

xΥ′′ (x)
= θ̄x− ε̄

θ̄ , (33)

where x = nsYsi

Ys
= ϕ(Psi

Ps
Ds). Recall that Ds =

∑ns

i=1
Υ′
(

nsYsi

Ys

)

Ysi

Ys
. In the Dixit-Stiglitz

case (ε̄ → 0), the elasticity is constant and equal to θ̄.

This functional form also produces variation in the super-elasticity, or the rate of

change of the elasticity. The super-elasticity is expressed as

ε (x) ≡ 1 −
Υ′ (x)

xΥ′′ (x)
−

Υ′ (x) Υ′′′ (x)

Υ′′ (x)2
= ε̄x− ε̄

θ̄ , (34)

where, again, x = nYsi

Ys
= ϕ(Psi

Ps
Ds). Depending on the value of ε̄, the super-elasticity

can provide a strong incentive for a firm to keeps its price close to the average sectoral

price. Note that θ̄ and ε̄ are the values of the elasticity and the super-elasticity at any
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symmetric equilibrium, i.e., whenever nYsi

Ys
= 1 ∀ i.

The effects of the super-elasticity on demand for a given variety are illustrated in

Figure 1. Compared to the Dixit-Stiglitz case of ε̄ = 0, the demand curve is less convex

with ε̄ > 0. When ε̄ = 5 the demand curve is approximately linear, and with ε̄ = 10 it is

ostensibly concave. Kimball’s preferences create a smoothed version of a kinked demand

curve, although for different reasons than in the traditional use of the term (other prices

are held fixed here, so it does not hinge on asymmetric responses of competitor prices).

As a firm’s relative price rises above one, its demand is choked off more quickly than

with CES. And as its relative price declines below one, its demand rises less rapidly

than it does under CES. Unlike CES preferences, with concavity there is a finite “choke

price” at which demand is zero. This will play an important role in our simulations,

because it effectively offers a firm the option of selling no output if it should so desire

in the face of comparatively low idiosyncratic productivity.

Figure 2 plots a firm’s profits as its price moves away from the symmetric point,

assuming common productivity and constant returns to scale. The higher the super-

elasticity, the more concave the profit function. Profits decline more steeply away from

one because price increases are penalized by plummeting demand and price decreases are

not rewarded by soaring demand. As in Figure 1, the prices at which demand disappears

entirely are clearly visible. The greater concavity drives home the “real rigidity” induced

by Kimball’s preferences. When idiosyncratic productivity shocks hit, firms will be less

aggressive in passing these marginal cost shocks on to their relative prices. And when
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common sectoral shocks hit, firm price responses will not be synchronized because of

the idiosyncratic shocks. As a result, the “Kimball kink” will slow down the response to

common shocks as well. How much so we will see in section 4 below. In the interim we

will briefly describe how we will solve the model and the data we will use to discipline

the model’s predictions.

2.7 Model solution

Due to the presence of a discrete-choice decision in the optimization problem expressed

in (16), the model is solved numerically using value function iteration. In this solution,

all state variables are placed on discrete grids. The bounds of the relative price state

are set wide enough to include all optimal pricing decisions, and prices are placed on the

grid in increments of 0.5%. The autoregressive process for idiosyncratic productivity

is transformed into a discrete-valued Markov chain following Tauchen (1986).3 The

three-variable VAR for sectoral inflation, the sectoral output-productivity ratio, and

the sectoral technology growth are similarly converted into a first-order Markov chain.4

This conversion results in a transition matrix expressing the probability of observing

any realization of future sectoral-level state variables as a function of the current state

variables.

In addition to the parameters which we will estimate, we set several parameters based

on the literature, U.S. data, or the steady state solution of the model. The growth rate

3The discrete grid for idiosyncratic productivity contains 7 points.
4The discrete grids for sectoral inflation, the sectoral output-productivity ratio, and the sectoral

technology growth shock contain 11, 7, and 7 points, respectively.
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of nominal output for the economy is set at 0.37 percent per month, which reflects

average nominal GDP growth of 4.4 percent in the United States over 1988-2004. The

monthly discount rate, β, is set at 0.996. The (normalized) wage is set at its symmetric

equilibrium steady state value, w = θ̄−1

θ̄
.

Following Willis (2000), the inflation forecasting equation in (19) is used to com-

pute a rational expectations equilibrium of the model. For a given specification of

the structural parameters of the model along with the inflation forecasting parameters,

Θ = {α1, α2, α3}, the model is solved and the policy function is generated. A panel of

320 firms over 240 months is then simulated using the policy functions.5

Simulating data from the model requires an updating process to determine the evo-

lution of the endogenous sectoral-level state variables. For tractability, we assume that

the sectoral variable Ds, which is a function of relative output levels of firms within the

sector, is held constant at its average value. The steady state value of this variable when

ε̄ = 0 is Ds = θ̄−1

θ̄
. More generally, Ds is concave in the dispersion of relative output

and decreasing in ε̄. Since no closed form solution is available for Ds, its value is set

equal to the average value of Ds computed using simulated data and equation (8).

The sectoral inflation rate and the sectoral output-productivity ratio (log ζs) are

determined by the collective actions of firms in the simulation. When setting prices in

the current period, firms know the current value of inflation and log ζs. To determine the

current period inflation rate, which in turn determines the value of log ζs using equations

(20) and (21), we locate the grid point in the discretized inflation state space that most

5The size of the panel was chosen to match the size of the average sector in the BLS dataset.
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closely matches the following two conditions from the model:6

1 =
1

ns

ns
∑

i=1

Υ

(

ϕ

(

Psi

Ps

Ds

))

(35)

1 =
1

ns

ns
∑

i=1

Psi

Ps

ϕ

(

Psi

Ps

Ds

)

. (36)

As a reminder, the first equation is the Kimball flexible variety aggregator. The second

equation is the implicit definition of Ds given in (8) after substituting the demand

function given in (9).

After simulating a panel of firm-months, we evaluate the forecasting rule used to

form expectations for future inflation. Adding in the exogenous sectoral productivity

growth shock, gZs, an OLS regression of the linear forecasting rule in (19) is executed on

the simulated data. The initial assumed values of the forecast parameters, Θ0, are then

compared to the OLS estimates, Θ1. If these values differ, then the forecast parameters

are updated based on Θ1 and a new solution for the model is derived. This updating

process continues until a fixed point is reached. This fixed-point solution represents a

rational expectations equilibrium where the inflation forecasting rule assumed by firms

matches up with the behavior of the simulated data.7

6Ideally, we would use these equations to endogenously determine Ds and πs. We are working on
an improved solution method that will allow us to include Ds as an additional state variable without
a significant loss in computation speed. Currently, the assumption of a constant value for Ds does not
appear to be too restrictive for the model. The standard deviation of Ds, computed using simulated
data and equation (8), is only 0.002.

7Following Krusell and Smith (1998), we are currently exploring whether the inclusion of additional
variables into the forecasting rule will lead to a significant improvement in the inflation forecast.
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3 CPI Data

In its Commodities and Services Survey, the U.S. Bureau of Labor Statistics checks the

prices of around 85,000 items a month in order to tabulate the U.S. CPI. An individual

item refers to a product or service with specific attributes sold by a particular outlet in a

given location. The Survey covers all goods and services other than shelter, or about 70%

of the CPI based on BLS consumer expenditure weights. The CPI Research Database,

maintained by the BLS Division of Price and Index Number Research, contains all prices

in the Commodities and Services Survey from January 1988 to the present. [See Klenow

and Kryvtsov (2005) for a more detailed description of the CPI Research Database.] We

base our statistics on data through December 2004 for the three largest areas – New

York, Los Angeles, and Chicago – for which all items are surveyed every month (as

opposed to bi-monthly for most items in other areas). This sub-sample consists of about

14,000 prices a month.

The BLS identifies each collected price as either a “regular” price or a “sale” price

(i.e., a temporarily low price that is labelled so in some way). Although sale prices may

require implementation costs, we focus on regular prices because they exhibit smaller

relative price changes. As we will report shortly, this will be a conservative approach. We

also exclude all price changes coinciding with a change in the item surveyed, seasonal

changeovers, and temporary stockouts. To minimize the importance of measurement

error, we drop price changes that exceed 10 natural log points in absolute value. These

price jumps constitute less than one-tenth of one percent of all price changes. Using a
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lower threshold, such as five log points, has almost no effect on our tabulations.

In order to estimate the parameters in our model, we calculate five statistics from the

CPI data. Several of these are related to statistics calculated by Klenow and Kryvtsov

(2005) from earlier vintages of the CPI Research Database. Further, several of the

statistics are similar to those used by Golosov and Lucas (2004) to calibrate their general

equilibrium state-dependent pricing model (albeit, without any real rigidities).

The first moment we calculate is the average sectoral inflation rate over time. Let

Psit denote the price of item i in sector s in month t, and ωsit the BLS weight on item

i within category s in month t. The weights in sector s sum to ω93
s in every month, the

BLS consumption expenditure weight of category s in 1993 (which themselves sum to

1). We define the sectoral inflation rate in month t as

πst =
∑

i

ωsit[log(Psit) − log(Psit−1)]/ω
93
s .

For each of 67 sectors (“Expenditure Classes”) in the BLS data, we calculate the mean

of inflation across the 203 months from February 1988 to December of 2004, or πs =

203
∑

t=1

πst/203. We then take the weighted average of these across sectors to arrive at 0.153%

per month:

π =
∑

s

ω93
s πs = 0.00153.

In similar fashion we calculate our second moment, the average (across sectors) of the

standard deviation of sectoral inflation (across months). We first compute the standard
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deviation of inflation across months for each sector, and then calculate the weighted

mean of these sectoral standard deviations to be 1.02%:

σπ =
∑

s

ω93
s

√

√

√

√

203
∑

t=1

(πst − πs)2/202 = 0.0102.

Our third moment is the average fraction of items changing price from one month to

the next. Let I(∆Psit 6= 0) be a price-change indicator for item i in sector s in month t.

It takes on the value 1 if the item changed price from month t− 1 to t, and 0 otherwise.

Weighting items and sectors appropriately, this indicator averages 21.5% across items,

sectors, and time:

I(∆P 6= 0) =
∑

s

ω93
s [

203
∑

t=1

(
∑

i

ωsitI(∆Psit 6= 0)/ω93
s )/203] = 0.215.

For the fourth and fifth moments, it is useful to define the sectoral price index

P st = exp(
t
∑

k=2

πsk). The index is 1 at t=1 in each sector, and cumulates inflation

going forward. We let psit denote the ratio of the price of item i to the sectoral price

index, psit = Psit/P st. This is the relative price of item i within sector s at time t.

For each sector, we calculated the serial correlation and standard deviation of log(psit)

across months with price changes. We took out item-specific means to deal with any

discrepancy in units (e.g., sizes of cereal boxes). We then took the weighted mean of

sector statistics to obtain a serial correlation of 0.318 and a standard deviation of 13.9%,
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again across new prices:

ρp =
∑

s

ω93
s

√

∑

i

ωsi

∑

Isit=1

(logpsit − logpsit)(logpsit−τsit
− logpsit) = 0.318.

σp =
∑

s

ω93
s

√

∑

i

ωsi

∑

Isit=1

(logpsit − logpsit)2 = 0.139.

Here Isit is shorthand for I(∆Psit 6= 0), and τsit is the age (duration) of the price at the

time of its “death” in month t. Separately, note that the sectoral price index we defined

above is not the same as that implied by the Kimball aggregator. We do not observe

all of the prices in the market, and hence do not construct this ideal price index. When

we simulate the model below, we will construct a simulation counterpart to what we

calculated in the data.

In Table 1, nearby, we provide these moments. We compute bootstrapped standard

errors by drawing “quotelines” (strings of prices for a given item) with replacement. As

shown, the moments are estimated with great precision – not surprising given the 2.8

million micro datapoints on prices underlying them. If we had looked at posted prices

rather than regular prices (i.e., omitted temporary price discounts), the main difference

would be a higher standard deviation of new relative prices over time (19% rather than

14%). Including price changes involving product turnover, seasonal changeovers, or

temporary stockouts would also have boosted the standard deviation. Finally, with

more disaggregate BLS sectors, specifically 250 instead of 67, the standard deviation

was virtually identical.
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Table 1: BLS CPI Moments

π̄ σπ I(∆P 6= 0) ρp σp

0.00153 0.0102 0.215 0.318 0.139

(0.00001) (0.0002) (0.001) (0.012) (0.002)

4 Model Estimation and Simulation

We selected the statistics in Table 1 from many possible statistics because we think they

represent key features of the data that the model should be able to mimic. We now

use the statistics in Table 1 to estimate some of the structural parameters of the model.

The parameters we will estimate are the standard deviation of innovations to sectoral

productivity growth (σgZ
), the autocorrelation coefficient for the idiosyncratic technol-

ogy process (ρA), the standard deviation of innovations to the idiosyncratic technology

component (σA), and the magnitude of the implementation cost (µφ). One additional

parameter, the mean growth rate of sectoral productivity, is calibrated directly using

the mean sectoral inflation rate. Although the other four parameters do not map one-

to-one to data statistics, we have strong intuition for how they relate to each other.

More volatile sectoral productivity growth, ceteris paribus, should boost the volatility

of sectoral inflation and the frequency of price changes. Higher serial correlation of

the idiosyncratic productivity term should increase the serial correlation and standard

deviation of relative price movements. A bigger standard deviation of idiosyncratic in-
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novations should increase the frequency of price changes and the size of relative price

movements. Finally, a higher menu cost should, ceteris paribus, reduce the frequency of

price changes.

We use the Simulated Method of Moments procedure to estimate these parameters.

In this procedure, the BLS moments, ΨBLS =
{

σπ, I(∆P 6= 0), ρp, σp

}

are matched up

against the same moments computed from simulated data, Ψsim(Φ). The moments from

the simulated data are functions of the structural parameters, Φ = {σgZ
, ρA, σA, µφ}.

The estimation involves finding the vector of structural parameters, Φ, that minimizes

the weighted distance between BLS moments and simulated moments.

min
Φ

(ΨBLS − Ψsim(Φ)) W (ΨBLS − Ψsim(Φ))′ (37)

Note that W represents the weighting matrix.8

Before estimating, we fix the value of three parameters. One is the returns to scale

parameter η. In this draft we set η = 1 in all simulations. In future drafts we will

entertain η < 1 as an extreme version of firm-specific factor markets. We also set the

elasticity of demand (evaluated at a relative price of 1) to θ̄ = 5, which implies a markup

of 25 percent in the case with no real rigidities. This is at the high end of most estimates

in the IO literature, but lower than the value of 11 (10 percent markup) typically used

8As discussed in Gourieroux and Monfort (1996), the resulting estimator is consistent. To limit
simulation error, we simulate a panel in the estimation procedure that is 10 times as long as the BLS
dataset. Since there are no permanent differences across firms, this approach is the same as simulating
10 panels, each with a different initial distribution, and then taking the average of the moments across
the 10 panels. We choose the former approach for computational simplicity.
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in the macro literature. In future drafts we will consider higher and lower values to

check the robustness of our findings. Finally and most crucially, we fix the value of the

super-elasticity at the symmetric point, ε̄. Initially we will set ε̄ = 0, the Dixit-Stiglitz

case of a constant elasticity. But we will contrast this with the case of ε̄ = 10. This

is the low value entertained by Eichenbaum and Fisher (2004), who also considered the

value of 33 suggested by Kimball (1995). Ideally we would like to estimate the super-

elasticity parameter, but even the elasticity parameter has proved hard to estimate in

the literature. Because we have price data but no quantity data, the challenge would be

even greater for us. We leave this to future versions.

In Table 2 below we present estimates of the four model parameters for the case

when we impose ε̄ = 0. We call this our baseline case. Note that the idiosyncratic shock

must be sizable (innovation standard deviation of around 12%) and somewhat persistent

(serial correlation around 0.7) in order to match the persistence and volatility of item

relative prices (across newly set prices). Also worth noting is the menu cost, which is

estimated to be around 6% of average firm revenue when spent. The menu cost must be

multiplied by the frequency of price changes to obtain the average expenditures on menu

costs relative to average firm revenue. This comes to 1.4%, which is in the neighborhood

of estimates by Levy, Bergen, Dutta and Venable (1997) and Zbaracki et al. (2004).
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Table 2: Estimation with ε = 0

Parameter Estimates Forecast Parameters

σgZ
ρA σA µφ α1 α2 α2 R2

0.017 0.678 0.119 0.064 0.01 0.33 -0.05 0.14

(0.001) (0.012) (0.001) (0.002)

Figure 3 plots the model response of the sectoral price index to a negative shock to

sectoral productivity. Impulse responses are computed by introducing a shock to sectoral

productivity growth relative to the baseline simulation. The shock is applied iteratively

to each possible period in the simulation, creating a series of impulse responses. Each im-

pulse response is based on a 1-period deviation in the sectoral productivity growth rate

relative to baseline. The variation across the responses arises from the model’s nonlin-

earity. In a linear model the response is the same regardless of the starting distribution

of relative prices.

In Figure 3, the solid line in the middle is the average response across simulations.

The two dotted lines represent the boundaries for the region that contains the middle

68 percent of the impulse responses, which approximates one standard deviation. The

width of the bands illustrates that the underlying distribution plays a large role in the

response to sectoral shocks.

On average, prices ultimately rise about 1% in response to the shock. Our focus

is on how long it takes to get there. The longer it takes, the greater the real output

response in the meantime. In the absence of the real rigidity and in the presence of

29



0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 3:  Sectoral price response to 1 percent sectoral productivity decline 
                                           (estimation with ε = 0)

months

30



modest nominal rigidity (over 20% of items changing prices per month), the response is

swift. The half-life is about one month, and prices almost fully respond after 6 months.

Clearly, the baseline model does not generate as much persistence as sought to match

structural VAR evidence of effects lasting well beyond a year.

We next simulate a model with the baseline parameter values from Table 2, except

with ε̄ = 10 rather than zero. Table 3 compares the data moments to those in the

baseline model and to those with ε̄ set to 10. The results are predictable. Adding a

real rigidity a la Kimball (1995) makes firms more reluctant to change prices (9% of the

time, down from 22%), and makes relative prices more stable (serial correlation of 0.15

down from 0.31, and standard deviation of 4% down from 14%). With the Kimball kink,

firms do not pass marginal cost shocks as fully onto their prices.

Table 3: Moments

σπ I(∆P 6= 0) ρp σp

BLS 0.010 0.215 0.318 0.139

ε̄ = 0 0.010 0.215 0.312 0.140

ε̄ = 10 0.005 0.089 0.154 0.038

Adding the real rigidity does prolong the response to a sectoral shock. Figure 4 dis-

plays a comparison of impulse responses from the two versions of the baseline estimation

model. The addition of real rigidities (ε̄ = 10) to the model increases the half-life of the

response to 5 months, and it now takes about 18 months for the full effect to be realized.
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As shown in Table 3, however, adding the real rigidity pushes the model moments

away from the data moments. We therefore re-estimate the model subject to ε̄ = 10.

The resulting parameter estimates (which closely match model and data moments) are

given in Table 4. Figure 5 provides the average impulse response and the one-standard-

deviation bands. Figure 6 compares the baseline impulse response function to that with

ε̄ = 10. With the real rigidity, the half-life is 4 months, and the full effect on prices

not seen until about 5 months. While it was shown in Figure 4 that real rigidity of the

degree considered here can considerably slow the response of prices, when the model

with real rigidity is estimated to match the BLS moments, the response of prices occurs

slightly more quickly.

Table 4: Parameter Estimates When ε = 10

Parameter Estimates Forecast Parameters

σgZ
ρA σA µφ α1 α2 α2 R2

0.024 0.705 0.349 0.130 0.01 0.22 -0.04 0.16

(0.003) (0.013) (0.025) (0.055)

Comparing the parameter estimates in Tables 2 and 4, two important differences are

evident. First, with the real rigidity the idiosyncratic shock must be very large – about

35%, compared to 12% without the real rigidity. This is the standard deviation of the

monthly innovation to firm productivity. In future drafts we will try to compare this

to evidence on firm-level productivity, but these shocks seem very large to us. They
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are necessary because, in the presence of the real rigidity, firms must face very large

marginal cost shocks in order to change their relative prices as much as we observe in

the CPI data. The second important change is to the size of menu costs. It doubles

in size to 13% of average firm revenue in the presence of the real rigidity. Taking into

account the frequency of price changes, menu costs absorb nearly 3% of average firm

revenue. This is larger than estimated by the papers with direct evidence on menu costs

(around 1%).

The models with and without the real rigidity also differ markedly in their implica-

tions for quantity movements. For the model with ε̄ = 0, Figure 7 plots simulated prices

and quantities for 100 months for a single item/firm. Both the prices and quantities are

relative to the industry aggregates. Given that supply (productivity) shocks drive price

movements in the model, the price and quantity movements are in opposite directions.

And given that demand is elastic (θ = 5 � 1), the quantities move significantly more,

in percentage terms, than the prices do.

Figure 8 plots simulated prices and quantities when ε̄ = 10. Compared to when

ε̄ = 0, quantities do not reach the same highs with ε̄ = 10. The real rigidity dampens

the rise in quantity demanded when the price falls; relative quantities do not even reach

twice the symmetric value, compared to over three times the symmetric value with no

real rigidity. The flip side is that quantities fall more sharply with the real rigidity in

response to relative price increases. Whereas quantities bottom out at half the symmetric

level without the real rigidity, they frequently fall to zero in the presence of the real
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rigidity. Strong real rigidity induces concavity in the demand curve, as shown in Figure

1. So quantities hit zero at finite relative prices. Figure 8 demonstrates that this is not

just a possibility, but a regular occurrence. Across many simulations, “total eclipse of

demand” occurs in about 22% of months, close to the frequency in Figure 8. We find

this implication implausible, but in the future we will investigate it systematically using

scanner data from U.S. grocery stores.

We next look at the histogram of relative prices and relative quantities in the ab-

sence and presence of the Kimball real rigidity, respectively. Figures 9 and 10 are the

histograms of relative prices (pooled across firm-months). With ε = 10, relative prices

are bimodal. Firms keep their relative price close to 1 unless their marginal cost is so

high that it is not profitable to sell, in which case they price themselves out of the mar-

ket. [In the model firms do not have the option of simply stocking out temporarily. This

occurs in about 5% of months in the CPI microdata. But no data on prices is available

in such months. The CPI relative price variability applies to items in stock.]

Figures 11 and 12 are the histograms of relative quantities (again, pooled across

firm-months). Quantities are more tightly distributed around 1 most of the time in

the presence of the real rigidity. But the left tail of zeroes stands out relative to what

happens without the real rigidity.
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Figure 9:  Histogram of prices, estimation with ε = 0

0.8 0.9 1 1.1 1.2 1.3 1.4
0

5

10

15

relative price

pe
rc

en
ta

ge
 d

is
tr

ib
ut

io
n

Figure 10:  Histogram of prices, estimation with ε = 10
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Figure 11:  Histogram of quantities, estimation with ε = 0
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Figure 12:  Histogram of quantities, estimation with ε = 10
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5 Conclusion

Research on monetary policy shocks seeks a model in which these shocks have real effects

lasting beyond a year. Promising ingredients include real rigidities coupled with nominal

rigidities. In this paper we explored the implications of Kimball’s (1995) concave demand

curve. Such a real rigidity makes firms highly averse to changing their relative prices,

so that without coordination it takes a long time for aggregate shocks to fully work

themselves into prices. But the micro evidence from the U.S. CPI displays large changes

in relative prices. Reconciling this micro fact with the Kimball real rigidity, we find,

requires big shocks to firm productivity (around 35% per month) and implies that firms

frequently price themselves out of the market (about 22% of months). These properties

appear extreme to us, but in future revisions we will compare them to micro evidence

on productivity and quantities.

A Kimball rigidity need not always have extreme implications for shocks and quanti-

ties. Perhaps, at a sufficiently disaggregate level, price changes are highly synchronized.

Synchronization, however, might undo the aggregate persistence that real rigidities were

conceived to generate. (No need to dampen one’s response to a common shock if com-

petitor price changes are synchronized.) Nevertheless, we will investigate this hypothesis

using scanner data from grocery stores.9 Another possibility is that taste shocks hit de-

mand for individual items in ways that affect relative prices but not relative quantities.

9Our preliminary investigation of publicly available Dominick’s data suggests that our CPI-based
calculations do not overstate relative price variability of close substitutes such as different brands of
soft drink, paper towels, cereal, etc.
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In the future we will consider idiosyncratic taste shocks as well. A third possibility is

that the Kimball rigidity applies at a higher, rather than lower, level of aggregation.

Consumers might have concave preferences over cereal vs. toothpaste, rather than over

competing brands of cereal or toothpaste. We will consider this hypothesis too in future

revisions. But, like synchronization in the presence of a low level real rigidity, a real

rigidity at a high level of aggregation might not prolong real effects of nominal shocks.

(No need to dampen one’s response to a common shock if one has little effect on the

category aggregate.)

In closing, we stress that we have focused on a single, albeit powerful, real rigidity:

concave demand. The facts we document may or may not be relevant for evaluating

some other real rigidities, such as specific factor markets or real wage rigidities. We

leave that to future work.
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