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The parameter space for continuous gravitational waves can be divided into amplitude parameters
(signal amplitude, inclination and polarization angles describing the orientation of the source, and
an initial phase) and phase-evolution parameters (signal frequency and frequency derivatives, and
parameters such as sky position which determine the Doppler modulation of the signal). The division
is useful in part because of the existence of a set of functions known as the Jaranowski-Królak-Schutz
(JKS) coordinates, which are a set of four coordinates on the amplitude parameter space such that
the gravitational-wave signal can be written as a linear combination of four template waveforms
(which depend on the phase-evolution parameters) with the JKS coordinates as coefficients. We
define a new set of coordinates on the amplitude parameter space, with the same properties, which
can be more closely connected to the physical amplitude parameters. These naturally divide into
two pairs of Cartesian-like coordinates on two-dimensional subspaces, one corresponding to left-
and the other to right-circular polarization. We thus refer to these as CPF (circular polarization
factored) coordinates. The corresponding two sets of polar coordinates (known as CPF-polar) can
be related in a simple way to the physical parameters. A further coordinate transformation can
be made, within each subspace, between CPF and so-called root-radius coordinates, whose radial
coordinate is the fourth root of the radial coordinate in CPF-polar coordinates. We illustrate some
simplifying applications for these various coordinate systems, such as: a calculation of the Jacobian
for the transformation between JKS or CPF coordinates and the physical amplitude parameters
(amplitude, inclination, polarization and initial phase); a demonstration that the Jacobian between
root-radius coordinates and the physical parameters is a constant; an illustration of the signal co-
ordinate singularities associated with left- and right-circular polarization, which correspond to the
origins of the two two-dimensional subspaces; and an elucidation of the form of the log-likelihood
ratio between hypotheses of Gaussian noise with and without a continuous gravitational-wave sig-
nal. These are used to illustrate some of the prospects for approximate evaluation of a Bayesian
detection statistic defined by marginalization over the physical parameter space. Additionally, in
the presence of simplifying assumptions about the observing geometry, we are able, using CPF-polar
coordinates, to explicitly evaluate the integral for the Bayesian detection statistic, and compare it
to the approximate results.

I. OVERVIEW

The gravitational-wave (GW) signal emitted from a
nearly periodic, non-precessing system, such as a rotat-
ing neutron star or a slowly-evolving binary of compact
objects, can be described by a number of system param-
eters, such as the sky position (e.g., as described by right
ascension and declination) of the source, the instanta-
neous frequency of the signal as a function of time, the
orientation of the equatorial/orbital plane, the distance
to the source, etc. Four of these parameters (a com-
bination of distance, moments of inertia and frequency
known as the signal amplitude h0, an initial phase φ0,
the inclination ι of the system angular momentum to
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the line of sight, and a polarization angle ψ which de-
scribes the orientation of the orbital plane) are gener-
ally known as amplitude parameters (or sometimes ex-
trinsic parameters). Jaranowski, Królak and Schutz [1]
showed that the GW signal can be written as a lin-
ear combination of four template waveforms, with co-
efficients given by four functions of the amplitude pa-
rameters {h0, χ = cos ι, ψ, φ0} and the form of the tem-
plate waveforms depending on the remaining parame-
ters, known variously as phase parameters, Doppler pa-
rameters, or intrinsic parameters. (We refer to them as
phase-evolution parameters.) The log-likelihood ratio be-
tween models including Gaussian noise with and without
a continuous GW signal is then quadratic in these four
functions, known as the Jaranowski-Królak-Schutz (JKS)
coordinates on amplitude parameter space. This allows
the likelihood function to be maximized analytically over
these parameters, which forms the basis of the F-statistic
method [1] to search for continuous gravitational waves.
Prix and Krishnan [2] propose an alternative, Bayesian-
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inspired detection statistic, in which the likelihood ratio
is marginalized over the amplitude parameters to gener-
ate a Bayes factor to compare the signal and noise hy-
potheses. The specific form of this statistic, known as the
B-statistic, depends on the prior probability distribution
for the amplitude parameters. Taking a prior distribution
uniform in the JKS coordinates would produce a statis-
tic equivalent to the F-statistic. However, a physically
realistic prior distribution should be isotropic in the ori-
entation of the equatorial/orbital plane of the emitting
system, i.e., uniform in both χ = cos ι and ψ. Thus the
relationship between the JKS and physical coordinates
is important for evaluating the B-statistic, either in JKS
coordinates, where the likelihood ratio is a Gaussian but
the prior probability distribution is more complicated,
or in physical coordinates, where the prior is simple by
the likelihood is more complicated. This paper proposes
several new sets of coordinates on amplitude parameter
space which elucidate this relationship, and the relation-
ship between physical amplitude parameters and the GW
signal.

The paper is organized as follows: In section II we write
the explicit signal model for continuous GWs, in terms
both of the tensor GW propagating from the source to the
solar system and of the signal received in each detector,
indicating the dependence on the amplitude and phase-
evolution parameters.

In section III we describe three types of coordinates
on the amplitude parameter space: the physical coordi-
nates {h0, ι, ψ, φ0} related to the emitting system, the
JKS coordinates {A1,A2,A3,A4} in which the signal is

linear, and a new set of coordinates {A1̆,A2̆,A3̆,A4̆}
which also have this property, but are more simply re-
lated to the physical coordinates. Because the coor-

dinate pairs {A1̆,A2̆} and {A3̆,A4̆} span the space of
right- and left-handed circular polarization, respectively,

we refer to {A1̆,A2̆,A3̆,A4̆} as CPF (circular polariza-
tion factored) coordinates. Considering the combina-

tions {A1̆,A2̆} and {A3̆,A4̆} as Cartesian coordinates on
their respective two-dimensional subspaces, we define the
corresponding polar coordinates {Ar, φr} and {Al, φl}–
known as CPF-polar coordinates–which have the practi-
cal advantage that {Ar, Al} are functions of only {h0, ι}
and {φr, φl} are functions of only {ψ, φ0}. A final useful
coordinate transformation is to so-called root-radius co-
ordinates which use the same angles {φr, φl} but define

radial coordinates rr = A
1/4
r and rl = A

1/4
l . The root-

radius coordinates have corresponding Cartesian coun-
terparts defined from the polar pairs in the usual way.

In section IV we illustrate several simple applications
of these new coordinates: Section IV A contains a simple
analytic calculation of the Jacobian of the transforma-
tion between JKS and physical coordinates, previously
calculated in [2] using the symbolic manipulation pro-
gram maxima[3]. We also illustrate the Jacobians for
conversions between various sets of coordinates and show
that the Jacobian between physical and root-radius coor-

dinates is a constant. In section IV B we consider the na-
ture of the coordinate singularities associated with right
and left circular polarization, which correspond toAr = 0
and Al = 0, respectively.

Section V contains several illustrations of how the new
coordinates can be applied to computation of the B-
statistic, by writing, in section V A, the log-likelihood
ratio explicitly in the new coordinates. In section V B
we illustrate the problem with an obvious technique for
approximate calculation of the B-statistic integral in JKS
or CPF coordinates, i.e., Taylor expanding the logarithm
of the Jacobian appearing in the prior probability den-
sity function (pdf) about the maximum-likelihood point.
The problem is that the resulting Gaussian expression
does not always have a maximum at the expected point;
if the maximum likelihood signal parameters are too close
to circular polarization, the integrand has a saddle point
at the point of interest, not a maximum. In section V C
we show that an approximate Gaussian integration can
be performed in root-radius coordinates, which gives a
simple relationship between the B-statistic and the F-
statistic, which should be valid when both the left- and
right-circular polarization amplitudes are large compared
to the scale set by the detector sensitivity and observing
time. In section V D, the expression for the log-likelihood
in the new coordinates of this paper is used to simplify
evaluation of the B-statistic integral as an integral over
the physical parameters by making clear the dependence
on the h0 and φ0 parameters, the integrals over which
can be performed analytically.

In section VI we consider the special case where the
averaged amplitude-modulation coefficients have a sim-
ple form which causes the likelihood ratio to factor into
pieces related to the two circular-polarization subspaces.
In that case, the B-statistic integral can be evaluated ex-
plicitly in CPF-polar coordinates. We compare the exact
solution to the various approximations considered in sec-
tion V.

Appendix A spells out the calculation of the log-
likelihood ratio in CPF coordinates, in particular the
“metric” made up of the coefficients in the quadratic
terms. Appendix B contains another related coordinate
system, which also have a constant Jacobian factor relat-
ing them to the physical parameters, but whose practical
applications remain to be found.

II. SIGNAL MODEL FOR CONTINUOUS
GRAVITATIONAL WAVES

The tensor GW signal from a nearly periodic source
can be written as

h
↔

(τ) = h+(τ) e↔+ + h×(τ) e↔× , , (2.1)

with

h+(τ) ≡ A+ cos[φ(τ) + φ0] , (2.2)

h×(τ) ≡ A× sin[φ(τ) + φ0] , (2.3)
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where τ is the time of arrival of the signal at the so-
lar system barycenter (SSB), e↔+ and e↔× are polarization
basis tensors, A+ and A× are the amplitudes of the cor-
responding polarizations, φ(τ) describes the phase evo-
lution of the signal, and φ0 is the phase at the reference
time τ = 0.

If we denote the unit vector from the source to the SSB
as ~k, the polarization basis tensors can be constructed
from unit vectors which form a right-handed orthonormal

basis {~̀, ~m,~k}:

e↔+ = ~̀⊗ ~̀− ~m⊗ ~m (2.4a)

e↔× = ~̀⊗ ~m+ ~m⊗ ~̀ . (2.4b)

Typical sources for GWs described by (2.1) are spinning
deformed neutron stars and slowly evolving compact bi-
nary systems. For concreteness, we will refer to the for-
mer, but the signal geometry is the same, with the equa-
torial plane of the spinning neutron star replaced by the
the orbital plane of the binary. A polarization basis which
produces the signal (2.1), in which the + and × compo-
nents are a quarter-cycle out of phase, is obtained by

choosing either ~̀ or ~m to lie in the equatorial plane of
the neutron star. For a given source sky position (which
can be specified by right ascension α and declination δ,

and defines the propagation direction ~k from the source
to the SSB), we need an additional polarization angle ψ

to specify the orientation of the basis vectors {~̀, ~m} used
to construct the polarization basis tensors {e↔+, e

↔
×}, as

illustrated in figure 1. The angle ψ is measured counter-

clockwise from a reference direction ~ı to ~̀. The freedom
to choose ~̀ or ~m pointing in either direction within the
orbital plane allows us to restrict ψ to a 90-degree interval
such as (−π/4, π/4]. The reference direction ~ı is defined
to lie in the Earth’s equatorial plane, perpendicular to
the line of sight, pointing in the local “West on the sky”
direction of decreasing right ascension. Together with a
unit vector ~ pointing “North on the sky” (perpendicular
to the line of sight, in the direction of increasing declina-

tion), it forms a right-handed orthonormal basis {~ı,~,~k}.
We can use this basis to form an alternate set of basis
tensors

ε↔+ =~ı⊗~ı− ~⊗ ~ (2.5a)

ε↔× =~ı⊗ ~+ ~⊗~ı (2.5b)

which are determined entirely by the sky position {α, δ}.
In terms of this alternate polarization basis, the preferred
basis can be written as

e↔+ = ε↔+ cos 2ψ+ ε↔× sin 2ψ (2.6a)

e↔× = − ε↔+ sin 2ψ + ε↔× cos 2ψ . (2.6b)

For GWs generated by a non-precessing system with
nearly periodically varying quadrupole moments (e.g., a
triaxial neutron star spinning about a principal axis), the

FIG. 1: Basis vectors used to define the basis tensors, from
the perspective of the observer looking at the source. The

propagation unit vector ~k is pointing out of the page. The
unit vector ~ı lies in the equatorial plane perpendicular to the
line of sight, pointing “West on the sky” in the direction of
decreasing right ascension α, and the unit vector ~ points
“North on the sky” in the direction of increasing declination
δ. They are used to construct basis tensors ε↔+ =~ı⊗~ı−~⊗~
and ε↔× = ~ı ⊗ ~ + ~ ⊗~ı. The source’s preferred polarization

basis e↔+ = ~̀⊗ ~̀− ~m⊗ ~m and e↔× = ~̀⊗ ~m+ ~m⊗ ~̀ is defined

by constructing a right-handed orthonormal basis {~̀, ~m,~k}
such that either ~̀ or ~m to lie parallel or antiparallel to the
projection onto the sky of the neutron star spin; the other
unit vector then lies in the neutron star’s equatorial plane.
The polarization angle ψ is measured counterclockwise from

~ı to ~̀. By choosing ~̀ or ~m to lie parallel or antiparallel to the
projected angular momentum, ψ can be arranged to lie in the
interval (−π/4, π/4].

amplitudes of the two polarizations are given by

A+ =
h0

2
(1 + cos2 ι) (2.7a)

A× = h0 cos ι , (2.7b)

where ι is the angle between the line of sight and the
neutron star’s rotation axis, and

h0 =
4G

c4
|Ixx − Iyy|Ω2

d
(2.8)

is the amplitude in terms of the equatorial quadrupole
moments {Ixx, Iyy}, the rotation frequency Ω, and the
distance d to the source.
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Finally, the phase evolution φ(τ) at the SSB is typically
described in terms of parameters describing the neutron
star rotation and spindown, e.g.,

φ(τ) = 2π

(
f0τ + f1

τ2

2
+ · · ·

)
, (2.9)

although it may be more complicated if, e.g., the spin-
ning neutron star is in a binary system which Doppler
modulates the signal.

The parameters describing the signal are divided into
two categories:

• Amplitude parameters {h0, ι, ψ, φ0}, and

• Phase-evolution parameters such as the sky posi-
tion {α, δ}, signal frequency and spindown param-
eters f0, f1, . . ., and any orbital parameters for spin-
ning neutron stars in binary systems.

Finally, the measured signal hX(t) at time t by detec-
tor X is the response of the detector to the GW tensor

h
↔
X(t) ≡ h

↔
(τX(t)). The function τX(t) denotes the SSB

arrival time τ of a wavefront that reaches detector X at
time t, which accounts for the sky-position {α, δ} depen-
dent Doppler modulation due to detector motion.

If we consider a stretch of time that is short enough for
the detector arms to have approximately constant orien-
tation, then we can most easily write the general detector
response in the frequency domain (see for example [4, 5])
as

h̃X(f) = h̃
↔
X(f) : d

↔
X(f)

= h̃X+ (f)FX+ (f) + h̃X× (f)FX× (f) ,
(2.10)

where ˜ denotes the Fourier-transform, and the antenna
pattern functions are defined as

FX+ (f) ≡ e↔+ : d
↔
X(f) , (2.11)

FX× (f) ≡ e↔× : d
↔
X(f) , (2.12)

in terms of the (generally complex, and sky-position de-

pendent) detector tensor d
↔
X(f). Along the lines of (2.6),

the dependence of {F+, F×} upon the sky position and
the polarization basis can be separated as

F+(α, δ, ψ) = a(α, δ) cos 2ψ+ b(α, δ) sin 2ψ , (2.13a)

F×(α, δ, ψ) = − a(α, δ) sin 2ψ + b(α, δ) cos 2ψ , (2.13b)

in terms of the (generally complex) amplitude modula-
tion coefficients

aX(f) ≡ ε↔+ : d
↔
X(f) ,

bX(f) ≡ ε↔× : d
↔
X(f) ,

(2.14)

which are independent of the signal amplitude parame-
ters.

In the case of ground-based detectors, one commonly
uses the long-wavelength limit approximation, as the in-
terferometer arms are typically much shorter than the
wavelength c/f0 of the GWs. In this limit the detector-

response tensor d
↔

(f) becomes real-valued and indepen-
dent of frequency (and sky-position), and can be ex-
pressed as

d
↔

(f) ≈ d
↔

LWL ≡
1

2
(~u⊗ ~u+ ~v ⊗ ~v) , (2.15)

for interferometer arms along unit vectors ~u and ~v.

III. COORDINATES ON AMPLITUDE
PARAMETER SPACE

A. Physical Coordinates

The amplitude parameters most closely connected to
the geometry of the emitting system are {h0, ι, ψ, φ0}.
They form a set of coordinates on the four-dimensional
amplitude parameter space. Any signal of the form (2.1)
can be described by parameters in the range

0 ≤ h0 <∞ and 0 ≤ ι ≤ π (3.1)

and

− π

4
< ψ ≤ π

4
and 0 ≤ φ0 < 2π (3.2)

The range of angles can be understood by noting that if
we make the transformation ψ → ψ + π/2, (2.6) implies
that {e↔+, e

↔
×} → {−e↔+,−e↔×}, which means that the

transformation {ψ, φ0} → {ψ + π/2, φ0 + π} leaves the
waveform (2.1) unchanged.

It is also convenient to define χ = cos ι, so that

A+ =
h0

2
(1 + χ2) and A× = h0χ (3.3)

and consider the physical coordinates {h0, χ=cos ι, ψ, φ0}
with parameter space ranges

0 ≤ h0 <∞ and − 1 ≤ χ ≤ 1 (3.4)

If the distribution of neutron star spins is isotropic, a
physical probability distribution on amplitude parameter
space should be uniform in χ and ψ as well as φ0, so that

pdf(h0, χ, ψ, φ0|Hs) =
1

2π2
pdf(h0|Hs) (isotropic prior)

(3.5)
Finally, note that the range on h0 and χ implies that

0 ≤ A+ <∞ and −A+ ≤ A× ≤ A+ (3.6)

If ι = π/2, so that χ = 0, the GW signal is linearly po-
larized. In this case, A+ = h0/2, A× = 0, and the signal
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in the preferred basis contains only the plus polarization
state:

h
↔

(τ) =
h0

2
cos(φ(τ) + φ0)e↔+

=
h0

2
cos(φ(τ) + φ0) (ε↔+ cos 2ψ + ε↔× sin 2ψ)

(3.7)

If ι = 0, so that χ = 1, the GW signal is right circularly
polarized. In this case, A+ = h0 = A× and the signal is

h
↔

(τ) = h0 [cos(φ(τ) + φ0)e↔+ + sin(φ(τ) + φ0)e↔×]

= h0 [cos(φ(τ) + φ0 − 2ψ)ε↔+ + sin(φ(τ) + φ0 − 2ψ)ε↔×]

(3.8)

We see that for right circular polarization there is a de-
generacy of the ψ and φ0 coordinates, with the waveform
depending only on the combination φ0 − 2ψ.

If ι = π, so that χ = −1, the GW signal is left circularly
polarized. In this case, A+ = h0 = −A× and the signal
is

h
↔

(τ) = h0 [cos(φ(τ) + φ0)e↔+ − sin(φ(τ) + φ0)e↔×]

= h0 [cos(φ(τ) + φ0 + 2ψ)ε↔+ + sin(φ(τ) + φ0 + 2ψ)ε↔×]

(3.9)

We see that for right circular polarization there is a de-
generacy of the ψ and φ0 coordinates, with the waveform
depending only on the combination φ0 + 2ψ.

B. JKS Aµ Coordinates

The basis of the F-statistic maximum likelihood
method [1] is the observation that the GW signal (2.1)
is linear in the following four combinations of the four
amplitude parameters:

A1 = A+ cos 2ψ cosφ0 −A× sin 2ψ sinφ0 (3.10a)

A2 = A+ sin 2ψ cosφ0 +A× cos 2ψ sinφ0 (3.10b)

A3 = −A+ cos 2ψ sinφ0 −A× sin 2ψ cosφ0 (3.10c)

A4 = −A+ sin 2ψ sinφ0 +A× cos 2ψ cosφ0 . (3.10d)

The GW tensor waveform (2.1) can be written as

h
↔

(τ ;A, λ) = Aµh
↔
µ(τ ;λ) , (3.11)

where

h
↔

1(τ) = ε↔+ cosφ(τ) (3.12a)

h
↔

2(τ) = ε↔× cosφ(τ) (3.12b)

h
↔

3(τ) = ε↔+ sinφ(τ) (3.12c)

h
↔

4(τ) = ε↔× sinφ(τ) (3.12d)

and we have introduced the Einstein summation conven-
tion that sums such as

∑4
µ=1 are implied when indices

are repeated. As illustrated in [2], using the maximized
likelihood as a detection statistic is equivalent to using a
marginalized likelihood, with an unphysical prior:

pdf(A1,A2,A3,A4|Hs) = constant (F-stat prior)
(3.13)

To convert the F-statistic prior into physical coordi-
nates, or to convert a physical isotropic prior of the form
(3.5) into {Aµ} coordinates requires the Jacobian for the
transformation between {h0, χ, ψ, φ0} and {Aµ}. This
was reported in [2] as

dA1 dA2 dA3 dA4 =
h3

0

4

(
1− χ2

)3
dh0 dχ dψ dφ0 ,

(3.14)
a derivation of which we present in section IV A. This
means that, for example,

pdf(A1,A2,A3,A4|Hs) =
4 pdf(h0, χ, ψ, φ0)

h3
0 (1− χ2)

3 . (3.15)

C. New Coordinates

1. CPF (Circular Polarization Factored) Coordinates

We now introduce an alternate set of coordinates {Aµ̆}
of the form

A1̆ ≡ A
1 +A4

2
(3.16a)

A2̆ ≡ A
2 −A3

2
(3.16b)

A3̆ ≡ A
1 −A4

2
(3.16c)

A4̆ ≡ −A
2 −A3

2
(3.16d)

The GW signal is also linear in these coordinates, with
the form (again using the Einstein summation conven-
tion)

h
↔

(τ ;A, λ) = Aµ̆ h
↔
µ̆(τ ;λ) , (3.17)

where

h
↔

1̆ = h
↔

1 + h
↔

4 (3.18a)

h
↔

2̆ = h
↔

2 − h
↔

3 (3.18b)

h
↔

3̆ = h
↔

1 − h
↔

4 (3.18c)

h
↔

4̆ = −h
↔

2 − h
↔

3 (3.18d)

so these new coordinates can be used in an F-statistic
construction in just the same way as the original JKS
{Aµ} coordinates.

The basis waveforms (3.18) take on a simple form if we
define left- and right-circular polarization basis tensors as

ε↔r = ε↔+ + i ε↔× and ε↔l = ε↔+ − i ε↔× (3.19)
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then

h
↔

1̆(τ) = Re
(
ε↔r e
−iφ(τ)

)
(3.20a)

h
↔

2̆(τ) = Im
(
ε↔r e
−iφ(τ)

)
(3.20b)

h
↔

3̆(τ) = Re
(
ε↔l e
−iφ(τ)

)
(3.20c)

h
↔

4̆(τ) = Im
(
ε↔l e
−iφ(τ)

)
(3.20d)

So we see that {A1̆,A2̆} and {A3̆,A4̆} are amplitudes of
the right- and left-circular polarized parts of the GW sig-
nal, respectively, just as the JKS coordinates {A1,A3}
and {A2,A4} are amplitudes of the plus- and cross-
polarized parts of the GW signal in a particular polariza-
tion basis. We thus refer to {Aµ̆} as circular polarization
factored (CPF) coordinates.

The CPF coordinates are more closely connected to
the physical amplitude parameters than are the JKS co-
ordinates. In particular

A1̆ = h0

(
1 + χ

2

)2

cos(φ0 + 2ψ) (3.21a)

A2̆ = h0

(
1 + χ

2

)2

sin(φ0 + 2ψ) (3.21b)

A3̆ = h0

(
1− χ

2

)2

cos(φ0 − 2ψ) (3.21c)

A4̆ = h0

(
1− χ

2

)2

sin(φ0 − 2ψ) . (3.21d)

2. CPF-polar Coordinates

The connection (3.21) becomes even simpler if we in-
troduce polar coordinates on each of the two-dimensional
subspaces:

A1̆ = Ar cosφr and A2̆ = Ar sinφr (3.22a)

A3̆ = Al cosφl and A4̆ = Al sinφl ; (3.22b)

These coordinates, which we call CPF-polar coordinates,
can be written

Ar =
A+ +A×

2
= h0

(
1 + χ

2

)2

and φr = φ0 + 2ψ ;

(3.23a)

Al =
A+ −A×

2
= h0

(
1− χ

2

)2

and φl = φ0 − 2ψ .

(3.23b)

We can see that (3.4) is equivalent to

0 ≤ Ar <∞ and 0 ≤ Al <∞ , (3.24)

while (3.2) is equivalent, taking into account the period-
icity of the angles, to

0 ≤ φr < 2π and 0 ≤ φl < 2π , (3.25)

which are just the ranges associated with {Ar, φr} and
{Al, φl} being polar coordinates. The mapping between
these subspaces is illustrated in figure 2.

It is also instructive to invert (3.23) and write the phys-
ical coordinates h0 and χ in terms of Ar and Al:

h0 = (
√
Ar +

√
Al)

2 and χ =

√
Ar −

√
Al√

Ar +
√
Al

, (3.26)

which can be related to the CPF coordinates {Aµ̆} by

Ar =

√
(A1̆)2 + (A2̆)2 and Al =

√
(A3̆)2 + (A4̆)2 .

(3.27)

3. Root-radius Coordinates

Finally, it is sometimes useful to define so-called root-
radius coordinates

rr = A
1/4
r = h

1/4
0

√
1 + χ

2
(3.28a)

rl = A
1/4
l = h

1/4
0

√
1− χ

2
(3.28b)

with corresponding Cartesian coordinates

xr = rr cosφr and yr = rr sinφr (3.29a)

xl = rl cosφl and yl = rl sinφl (3.29b)

The relationship of these coordinates to the CPF coordi-
nate system is

A1̆ = r3
r xr and A2̆ = r3

r yr (3.30a)

A3̆ = r3
l xl and A4̆ = r3

l yl , (3.30b)

and the physical parameters can be written

h0 = (r2
r + r2

l )2 and χ =
r2
r − r2

l

r2
r + r2

l

. (3.31)

IV. APPLICATIONS OF THE NEW
COORDINATES

A. Calculation of the Jacobian Between Physical
and JKS Coordinates

We can obtain the Jacobian determinant for the
transformation between the physical amplitude param-
eters {h0, χ = cos ι, ψ, φ0} and the JKS coordinates
{A1,A2,A3,A4} by treating the transformation as a se-
quence of transformations in which the coordinates are
being transformed in pairs.

First, we invert (3.16) to obtain

A1 = A1̆ +A3̆ (4.1a)

A2 = A2̆ −A4̆ (4.1b)

A3 = −A2̆ −A4̆ (4.1c)

A4 = A1̆ −A3̆ , (4.1d)
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FIG. 2: Correspondence between {Ar, φr} and {Al, φl}, which act as polar coordinates for {A1̆,A2̆} and {A3̆,A4̆}, respectively,
and the physical amplitude parameters {h0, χ= cos ι, ψ, φ0}. At left are lines of constant h0 ∈ [0,∞) and χ ∈ [−1, 1], drawn in
first quadrant of the {Ar, Al} plane. (The grey shaded region, where Ar < 0 and/or Al < 0, represents unphysical coordinate
values.) The positive Ar axis, where Al = 0, corresponds to χ = 1, where the GW signal is right circularly polarized. The
positive Al axis, where Ar = 0, corresponds to χ = −1, where the GW signal is left circularly polarized. At right, the principal
region of polarization ψ ∈ (−π/4, π/4] and phase φ0 ∈ [0, 2π) is shown in the {φr, φl} plane; φr and φl are each periodically
identified, with period 2π. Note that since the transformation {ψ, φ0} → {ψ + π/2, φ0 + π} leaves the waveform unchanged,
the edge ψ = −π/4, φ0 ∈ [0, π) is actually identified with ψ = π/4, φ0 ∈ [π, 2π), while ψ = −π/4, φ0 ∈ [π, 2π) is identified
with ψ = π/4, φ0 ∈ [0, π). These periodic identifications show that the principal {ψ, φ0} region is equivalent to the region
φr ∈ [0, 2π), φl ∈ [0, 2π).

which produces the Jacobian determinants

dA1 dA4 = 2 dA1̆ dA3̆ and dA2 dA3 = 2 dA2̆ dA4̆ .
(4.2)

Next, since (3.22) define {Ar, φr} as the polar co-
ordinates corresponding to the Cartesian coordinates

{A1̆,A2̆}, and likewise for {Al, φl} and {A3̆,A4̆}, the
relevant Jacobian determinants are

dA1̆ dA2̆ = Ar dAr dφr and dA3̆ dA4̆ = Al dAl dφl .
(4.3)

Finally, the identifications (3.23) lead to the Jacobian
matrices

(
dAr

dAl

)
=

((
1+χ

2

)2
h0

1+χ
2(

1−χ
2

)2 −h0
1−χ

2

)(
dh0

dχ

)
(4.4)

and
(
dφr
dφl

)
=

(
2 1
−2 1

)(
dψ
dφ0

)
, (4.5)

whose determinants tell us

dAr dAl = h0
1− χ2

4
dh0 dχ and dφr dφl = 4 dψ dφ0 .

(4.6)

To combine the effects of these three transformations,
note from (3.23) that

ArAl =

(
h0

1− χ2

4

)2

(4.7)

and thus

dA1 dA2 dA3 dA4 = 4 dA1̆ dA2̆ dA3̆ dA4̆

= 4ArAl dAr dAl dφr dφl

= 16

(
h0

1− χ2

4

)3

dh0 dχ dψ dφ0 (4.8)

which is the same as the form (3.14) presented in [2].
Note that, using (4.7) we can rewrite (4.8) as

dh0 dχ dψ dφ0 =
dAr dAl dφr dφl

4
√
ArAl

=
dA1̆ dA2̆ dA3̆ dA4̆

4
[
(A1̆)2 + (A2̆)2

]3/4[
(A3̆)2 + (A4̆)2

]3/4 . (4.9)

If we recall the root-radius coordinates defined so that
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r2
r = A

1/2
r and r2

l = A
1/2
l , we have

dAr

2
√
Ar

= 2rr drr and
dAl

2
√
Al

= 2rl drl , (4.10)

so that

dh0 dχ dψ dφ0 = 4 rr drr dφr rl drl dφl

= 4 dxr dyr dxl dyl ,
(4.11)

i.e., the natural measure in physical coordinates is, up to
a constant, just the usual Lebesgue measure on a Carte-
sian space.

B. Nature of the Coordinate Singularities for
Circular Polarization

The volume element (4.8) has singularities in terms
of the physical coordinates for circular polarization, i.e.,
χ = ±1, because the Jacobian

J = 2

(
h0

1− χ2

2

)3

= 2
(
A2

+ −A2
×
)3/2

= 16 (ArAl)
3/2

= 16
{[

(A1̆)2 + (A2̆)2
][

(A3̆)2 + (A4̆)2
]}3/4

(4.12)

vanishes there.

1. Right Circular Polarization (χ = 1, i.e., ι = 0)

When χ = 1, so that A× = A+, the polar amplitude
coordinates become Ar = h0 and Al = 0, so the com-
bination ArAl vanishes, and the amplitude parameters
become

A1 = A4 = A1̆ = h0 cos(φ0 + 2ψ) (4.13a)

A2 = −A3 = A2̆ = h0 sin(φ0 + 2ψ) (4.13b)

A3̆ = A4̆ = 0 (4.13c)

The waveform (2.1) is completely described by the am-
plitude h0 and the phase φr = φ0 + 2ψ, exhibiting the
well-known degeneracy between ψ and φ0 for circular po-
larization.

2. Left Circular Polarization (χ = −1, i.e., ι = π)

When χ = −1, so that A× = −A+, the polar ampli-
tude coordinates become Ar = 0 and Al = h0, so the
combination ArAl vanishes, and the amplitude parame-
ters become

A1̆ = A2̆ = 0 (4.14a)

A1 = −A4 = A3̆ = h0 cos(φ0 − 2ψ) (4.14b)

−A2 = −A3 = A4̆ = h0 sin(φ0 − 2ψ) (4.14c)

The waveform (2.1) is completely described by the am-
plitude h0 and the phase φl = φ0 − 2ψ, exhibiting the
well-known degeneracy between ψ and φ0 for circular po-
larization.

V. INTEGRATION TECHNIQUES FOR THE
B-STATISTIC TARGETED SEARCH METHOD

Prix and Krishnan [2] consider the case of a targeted
search, where the signal hypothesis Hs has known phase-
evolution parameters {α, δ, f0, f1, . . .} but unknown am-
plitude parameters, obeying some prior probability dis-
tribution pdf(A|Hs).1 Given some observed data x, they
calculate the Bayes factor

B(x) =
pdf(x|Hs)
pdf(x|Hn)

=

∫
pdf(x|Hs,A) pdf(A|Hs) d4A

pdf(x|Hn)

=

∫
eΛ(A;x) pdf(A|Hs) d4A ,

(5.1)

which they call the B-statistic, in contrast with the F-
statistic, which is the maximum log-likelihood ratio

F(x) = max
A

ln
pdf(x|Hs,A)

pdf(x|Hn)
= max

A
Λ(A;x) . (5.2)

A. Form of the Log-Likelihood Ratio

The log-likelihood ratio can be written in the form2

[5, 6]

Λ({Aµ};x) = Aµxµ −
1

2
AµMµνAν (5.3)

where we defined

xµ ≡ (x|hµ) , and Mµν ≡ (hµ|hν) , (5.4)

in terms of the standard scalar product (·|·) defined in
(A1), the strain data x and the four scalar basis wave-
forms hµ, which are the detector’s response to the four

GW tensor functions h
↔
µ according to (2.10). As shown

in appendix A, the matrix {Mµν} is explicitly found to
have the form

{Mµν} =



A C 0 E
C B −E 0
0 −E A C
E 0 C B


 . (5.5)

1 We will adopt the convention that A with no superscripts refers
to an arbitrary set of coordinates on the four-dimensional ampli-
tude parameter space, while {Aµ}, {Aµ̆}, etc, refer to a specific
set of coordinates.

2 As before, we use the Einstein summation convention to imply
sums over µ and ν as appropriate.
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In the long-wavelength limit, E = 0; it is non-zero only
in the regime where the finite size of the detector is im-
portant, and the simple response tensor (2.15) is replaced
by a complex frequency-dependent expression.

Since the new amplitude coordinates {Aµ̆} are linear
combinations of the {Aµ}, we can also write the log-
likelihood ratio as a quadratic in those coordinates:

Λ({Aµ̆};x) = Aµ̆xµ̆ −
1

2
Aµ̆Mµ̆ν̆Aν̆ , (5.6)

with

xµ̆ = (x|hµ̆) , and Mµ̆ν̆ = (hµ̆|hν̆) , (5.7)

in analogy to (5.4), and the transformed matrix is found
to have the form

{Mµ̆ν̆} =




I 0 L −K
0 I K L
L K J 0
−K L 0 J


 , (5.8)

with the explicit matrix elements given in appendix A,
and in the long-wavelength limit we have I = J .

In terms of the data vector {xµ̆} (whose explicit form is
given in appendix A), the linear part of the log-likelihood
ratio is

Aµ̆xµ̆ = p(x1̆ cosφr +x2̆ sinφr)+q(x3̆ cosφl +x4̆ sinφl) .
(5.9)

The quadratic part of the log-likelihood can be written
in the {Aµ̆} coordinates as

Aµ̆Mµ̆ν̆Aν̆ = I[(A1̆)2 + (A2̆)2] + J [(A3̆)2 + (A4̆)2]

+ 2K[−A1̆A4̆ +A2̆A3̆] + 2L[A1̆A3̆ +A2̆A4̆]

= IA2
r + JA2

l

+ 2ArAl [K sin(φr − φl) + L cos(φr − φl)] .
(5.10)

Note that this depends upon the angular coordinates only
in the combination φr − φl = 4ψ, and is independent of
φr + φl = 2φ0.

Because the amplitude parameters {Aµ̆} which maxi-
mize the log-likelihood ratio Λ({Aµ̆};x) are given by

Âµ̆(x) =Mµ̆ν̆xν̆ , (5.11)

where {Mµ̆ν̆} is the matrix inverse of {Mµ̆ν̆}, and the
maximum of the log-likelihood ratio is the F-statistic

F(x) =
1

2
xµ̆Mµ̆ν̆xν̆ =

1

2
Âµ̆(x)Mµ̆ν̆Âν̆(x) , (5.12)

it is convenient to write the log-likelihood ratio as

Λ({Aµ̆};x) = F(x)− 1

2
[Aµ̆ − Âµ̆(x)]Mµ̆ν̆ [Aν̆ − Âν̆(x)] .

(5.13)

B. Integration in CPF coordinates

Since the log-likelihood ratio Λ(A;x) (5.13) is
quadratic in {Aµ̆} (just as it is in {Aµ}) we can do
the Gaussian integral, for the case of the unphysical F-
statistic prior (3.13), as shown in [2]:

B(x) =

∫
eΛ(A;x) pdf(A|Hs) d4A

∝
∫
eA

µ̆xµ̆− 1
2Aµ̆Mµ̆ν̆Aν̆ dA1̆ dA2̆ dA3̆ dA4̆

= eF(x)

∫
e−

1
2 ∆Aµ̆Mµ̆ν̆∆Aν̆ dA1̆ dA2̆ dA3̆ dA4̆

∝ eF(x) .

(5.14)

If, however, an isotropic prior(3.5) is used, so that

pdf({Aµ̆}|Hs) = pdf(A1̆,A2̆,A3̆,A4̆|Hs)

=
4

J pdf(h0, χ, ψ, φ0|Hs) =
2

π2

pdf(h0|Hs)
J , (5.15)

where J is the Jacobian determinant specified in (4.12).
Then if we define

α(A) = ln
pdf(h0|Hs)
J , (5.16)

the B-statistic integral can be written as

B(x) ∝ eF(x)

∫
e−

1
2 ∆Aµ̆Mµ̆ν̆∆Aν̆+α(A) dA1̆ dA2̆ dA3̆ dA4̆ .

(5.17)
One possible approach would be to Taylor expand α(A)

about the maximum-likelihood point Â,

α(A) = α̂+ α̂µ̆∆Aµ̆ +
1

2
α̂µ̆ν̆∆Aµ̆∆Aν̆ +O([∆A]3) ,

(5.18)
where we have defined the expansion coefficients

α̂ = α(Â) (5.19a)

α̂µ̆ =
∂α

∂Aµ̆
∣∣∣∣
A=Â

(5.19b)

α̂µ̆ν̆ =
∂2α

∂Aµ̆∂Aν̆
∣∣∣∣
A=Â

. (5.19c)

(This was the method used in Cohen et al. [7] for approx-
imating the analog of the B-statistic for the case of GW
bursts from cosmic strings.) We could then approximate
the integral as Gaussian, obtaining the result

B(x) ∝ (det{Nµ̆ν̆(x)})−1/2

× exp

(
F(x) + α̂(x) +

1

2
α̂µ̆(x)N µ̆ν̆(x)α̂ν̆(x)

)
,

(5.20)
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where we have defined the matrix

Nµ̆ν̆(x) =Mµ̆ν̆ − α̂µ̆ν̆(x) (5.21)

and its inverse N µ̆ν̆ (so that N µ̆ν̆Nν̆σ̆ = δµσ). However,
this approximation can only be valid if the matrix N µ̆ν̆

is positive definite, so that the point Aµ̆ = Âµ̆ +N µ̆ν̆ α̂ν̆
is a maximum of the integrand in (5.17). We will show
that that is not in general true by calculating the explicit
form of α̂µ̆ν̆ .

We limit attention to the simple case of a uniform prior
on h0, pdf(h0|Hs) = const. In that case,

α(A) = − lnJ + const = −3

2
ln(ArAl) + const

= −3

4
ln
(

[A1̆]2 + [A2̆]2
)
−3

4
ln
(

[A3̆]2 + [A4̆]2
)

+const ,

(5.22)

and we can calculate the unique non-vanishing deriva-
tives as

∂α

∂A1̆
= −3

2

A1̆

[A1̆]2 + [A2̆]2
(5.23)

and

∂2α

(∂A1̆)2
= −3

2

[A2̆]2 − [A1̆]2

([A1̆]2 + [A2̆]2)2
=

3

2

cos 2φr
A2

r

(5.24a)

∂2α

∂A1̆∂A2̆
=

3

2

2A1̆A2̆

([A1̆]2 + [A2̆]2)2
=

3

2

sin 2φr
A2

r

, (5.24b)

with the derivatives with respect to the other {Aµ̆} fol-
lowing by inspection. The resulting matrix is

α̂µ̆ν̆ =
3

2




cos 2φ̂r

Â2
r

sin 2φ̂r

Â2
r

0 0

sin 2φ̂r

Â2
r

− cos 2φ̂r

Â2
r

0 0

0 0 cos 2φ̂l

Â2
l

sin 2φ̂l

Â2
l

0 0 sin 2φ̂l

Â2
l

− cos 2φ̂l

Â2
l




. (5.25)

Now, if the data happen to be such that the maximum

likelihood estimates of the amplitude parameters Â cor-
respond to right- or left-circular polarization, then the

parameter Âr or Âl, respectively, will be small. Since
the metric {Mµ̆ν̆} is determined by the observing ge-
ometry and the noise level, and not the realization of the

data, it can always happen that Âr or Âl is small enough
that two of the eigenvalues of Nµ̆ν̆(x) = Mµ̆ν̆ − α̂µ̆ν̆(x)
will be approximately equal to the corresponding eigen-
values of −α̂µ̆ν̆(x), which will be the eigenvalues of the
matrix

3

2Â2
r

(
− cos 2φ̂r − sin 2φ̂r
− sin 2φ̂r cos 2φ̂r

)
, (5.26)

which are ± 3
2A2

r
(or the corresponding expression involv-

ing Al, in the case of left circular polarization). Since

these two eigenvalues have opposite signs, {Nµ̆ν̆} is not a

positive definite matrix, the point Aµ̆ = Âµ̆+N µ̆ν̆ α̂ν̆ is a
saddle point rather than a maximum, and the Gaussian
approximation for the integral (5.17) fails.

One issue with this approach is that the maximum
likelihood point is a stationary point of Λ(A;x) rather
than Λ(A;x) + α(A), and we should consider expanding
about the maximum of Λ(A;x)+α(A). In fact, Λ(A;x)+
α(A) has no global maximum, as examination of (5.22)
shows that α(A) → +∞ as Ar or Al goes to zero. The
best we can hope for is a local maximum when

∂

∂Aµ̆ [Λ(A;x) + α(A)] = xµ̆ −Mµ̆ν̆Aν̆ + αµ̆(A) = 0 .

(5.27)
This local maximum can fail to exist even when the ma-
trix {Nµ̆ν̆} is positive definite, and in any event, the
Gaussian integral would only approximate the area un-
der the local maximum, not the contribution from the
integrable singularity at Ar = 0 and Al = 0. This is
examined in further detail in section VI C.

C. Integration in root-radius coordinates

As we’ve seen in section V B, while the log-likelihood
ratio is quadratic in CPF (or JKS) coordinates, the inte-
grand of the B-statistic integral arising from an isotropic
prior (3.5) contains a coordinate singularity which pre-
vents the integrand from being approximated by a Gaus-
sian. If we focus attention on the constant-h0 prior

pdf(h0, χ, ψ, φ0|Hs) = const , (5.28)

the measure of the integral will be constant not only in
physical coordinates {h0, χ, ψ, φ0} but also in the root-
radius Cartesian coordinates {xr, yr, xl, yl} defined in
section III C 3 [see (4.11)]. The integral will not be a
Gaussian, since the log-likelihood ratio will no longer be
quadratic in these coordinates, but it will remain non-

singular and have a single maximum at the point A = Â.
Thus we can write the integral as

B(x) ∝
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
eΛ(A;x) dxr dyr dxl dyl

(5.29)
and attempt to Taylor expand the log of the integrand,
Λ(A;x), about its maximum. Writing

{Aα} = {xr, yr, xl, yl} , (5.30)

the expansion is

Λ(A;x) =Λ(Â;x) +
∂Λ

∂Aα
∣∣∣∣
A=Â

(Aα − Âα)

+
1

2

∂2Λ

∂Aα∂Aβ
∣∣∣∣
A=Â

(Aα − Âα)(Aβ − Âβ)

+O([A− Â]3) .

(5.31)



11

Since Â is the maximum-likelihood point, Λ(Â;x) =
F(x) and ∂Λ

∂Aα
∣∣
A=Â

= 0. If we use (5.13) to calculate

∂2Λ

∂Aα∂Aβ =
∂2Aµ̆

∂Aα∂AβMµ̆ν̆ [Aν̆−Âν̆(x)]+
∂Aµ̆
∂AαMµ̆ν̆

∂Aν̆
∂Aβ ,
(5.32)

we see that

∂2Λ

∂Aα∂Aβ
∣∣∣∣
A=Â

=
∂Aµ̆
∂Aα

∣∣∣∣
A=Â

Mµ̆ν̆
∂Aν̆
∂Aβ

∣∣∣∣
A=Â

. (5.33)

Thus

Λ(A;x)

= F(x)+
1

2

∂Aµ̆
∂Aα

∣∣∣∣
A=Â

Mµ̆ν̆
∂Aν̆
∂Aβ

∣∣∣∣
A=Â

(Aα−Âα)(Aβ−Âβ)

+O([A− Â]3) ; (5.34)

if we keep only the quadratic piece, we get the approxi-
mate Gaussian integral

lnB(x) ≈ F(x)− 1

2
ln det

{
∂2Λ

∂Aα∂Aβ
∣∣∣∣
A=Â(x)

}
+ const

≈ F(x)− ln det

{
∂Aν̆
∂Aβ

∣∣∣∣
A=Â(x)

}
+ const ,

(5.35)

where we have absorbed the term − 1
2 det {Mµ̆ν̆} into the

constant since it does not depend on the data.
The determinant

det

{
∂Aν̆
∂Aβ

}
= 16(ArAl)

3/2 (5.36)

has already been calculated, since it’s the Jacobian for
the transformation between the coordinates {Aα} =

{xr, yr, xl, yl} and {Aµ̆} = {A1̆,A2̆,A3̆,A4̆}. This
means that

lnB(x) ≈ F(x)− 3

2
ln
(
Âr(x) Âl(x)

)
+ const . (5.37)

This approximate correction factor in B(x) has a famil-
iar form: it’s the Jacobian appearing in the Gaussian
integral in CPF coordinates, evaluated at the maximum
likelihood point. The approximation again breaks down
if the maximum likelihood point is too close to circu-

lar polarization, i.e., if Âr(x) or Âl(x) is close to zero.
It’s easy to see why this is the case: the log-likelihood-

ratio Λ(A;x) has terms proportional to (Ar − Âr(x))2

and (Al − Âl(x))2; if e.g., Âr(x) = 0, the first term
becomes A2

r = r8
r = (x2

r + y2
r)4, and Λ(A;x) cannot be

approximated as quadratic in xr and yr, since the second
derivatives at the maximum likelihood point vanish. The
resulting Gaussian is infinitely wide, leading to the diver-
gence of the approximated integral. We examine where
the Gaussian approximation breaks down as a function

of Âr(x) and Âl(x) in section VI B.

D. Integration in physical coordinates

Continuing our consideration of the B-statistic inte-
gral in the case of a prior distribution uniform in the
physical coordinates {h0, χ, ψ, φ0}, we turn to integra-
tion in the physical coordinates themselves. The measure
of the integral is again constant, while the log-likelihood
ratio is more complicated. By examining the functional
form of the integrand, we can see which integrals can be
performed exactly and which must be approximated or
evaluated numerically. Using the explicit forms in sec-
tion V A, and keeping in mind the forms (3.23) of Ar

and Al, we see that (5.10) is independent of φ0 and pro-
portional to h2

0, so has the form

Aµ̆Mµ̆ν̆Aν̆ = h2
0[γ(χ, ψ)]2 (5.38a)

while (5.9) is proportional to h0 and depends on trigono-
metric functions of φr = φ0 + 2ψ and φl = φ0 − 2ψ; it
can thus be written

Aµ̆xµ̆ = h0 ω(x;χ, ψ) cos(φ0 − ϕ0(x;χ, ψ)) . (5.38b)

Inserting this form of the log likelihood into (5.1) and
assuming the isotropic prior (3.5) gives us

B ∝
∫ 1

−1

∫ π/4

−π/4

∫ ∞

0

pdf(h0|Hs) e−
1
2h

2
0[γ(χ,ψ)]2

∫ 2π

0

exp {h0 ω(x;χ, ψ) cos[φ0 − ϕ0(x;χ, ψ)]} dφ0

dh0 dψ dχ . (5.39)

The integration over φ0 can be performed by using the

Jacobi-Anger expansion to show that
∫ 2π

0
ex cosφ dφ =

2π I0(x), where I0(x) = J0(ix) is the modified Bessel
function of the first kind (cf [8]). This results in

B ∝
∫ 1

−1

∫ π/4

−π/4

∫ ∞

0

pdf(h0|Hs) e−
1
2h

2
0[γ(χ,ψ)]2

I0(h0 ω(x;χ, ψ)) dh0 dψ dχ . (5.40)

If we once again consider the simple case of a prior which
is uniform in h0 over the range of interest, we can use the
identity

∫ ∞

0

e−a
2t2 Iν(bt) dt =

π1/2

2a
eb

2/8a2

I ν
2

(
b2

8a2

)
,

Re(ν) > −1,Re(a2) > 0 (5.41)

(see Eq. 11.4.31 in [8]) to perform the h0 integral analyt-
ically as well, leaving a two-dimensional integral for the
B-statistic:

B ∝
∫ 1

−1

∫ π/4

−π/4

I0(ξ(x;χ, ψ)) eξ(x;χ,ψ)

γ(χ, ψ)
dψ dχ , (5.42)

where

ξ(x;χ, ψ) =
[ω(x;χ, ψ)]2

4[γ(χ, ψ)]2
. (5.43)
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Further approximation and/or numerical evaluation
techniques, which are beyond the scope of this paper,
can be applied to the expression (5.42).

VI. EXPLICIT EVALUATION OF B-STATISTIC
INTEGRAL

A. Exact Solution in CPF-polar Coordinates

To get a more concrete sense of when the various ap-
proximations described in the previous sections break
down, we consider a special case in which the integral
defining the B-statistic with the prior pdf (3.5) can be
explicitly evaluated. This occurs when we assume

A = B =
1

2h2
det

(6.1a)

C = E = 0 , (6.1b)

so that (5.8) becomes

Mµ̆ν̆ = h−2
det δµ̆ν̆ (6.2)

and the log-likelihood ratio is

Λ(A;x) = Λr(Ar, φr; Âr, φ̂r) + Λl(Al, φl; Âl, φ̂l) (6.3)

where

Λr(Ar, φr; Âr, φ̂r) =
1

2

A2
r

h2
det

− ArÂr

h2
det

cos(φr − φ̂r)

(6.4a)

Λl(Al, φl; Âl, φ̂l) =
1

2

A2
l

h2
det

− AlÂl

h2
det

cos(φl − φ̂l)
(6.4b)

and likewise

F(x) = Fr(Âr) + Fl(Âl) (6.5a)

where

Fr(Âr) =
1

2

Â2
r

h2
det

and Fl(Âl) =
1

2

Â2
l

h2
det

. (6.5b)

In these expressions the observed data x manifest them-

selves in the maximum-likelihood values {Âr, Âl, φ̂r, φ̂l}.
We have suppressed the x dependence in the interest of
simplifying the notation.

The B-statistic is then

B(x) = Br(Âr)Bl(Âl) , (6.6)

where

Br(Âr)

Br(0)
= C

∫ 2π

0

∫ ∞

0

eΛr(Ar,φr;Âr,φ̂r)A
−1/2
r dAr dφr ,

(6.7)

with a similar expression for Bl(Âl)/Bl(0). We have put
aside the question of normalization by writing an expres-

sion for Br(Âr)/Br(0) and defining

C =
1

21/4πh
1/2
det Γ(1/4)

. (6.8)

We now demonstrate the explicit evaluation of the inte-
gral. We evaluate the φr integral as follows:

Br(Âr)

Br(0)

= C

∫ 2π

0

∫ ∞

0

eArÂr cos(φr−φ̂r)/h2
det
e−A

2
r/2h

2
det

A
1/2
r

dAr dφr

= 2πAe−Â
2
r/2h

2
det

∫ ∞

0

e−A
2
r/2h

2
det

A
1/2
r

I0

(
ArÂr

2h2
det

)
dAr ,

(6.9)

where we have used the Jacobi-Anger expansion [8] and
I0(x) = J0(ix) is the modified Bessel function of the first
kind. The Ar integral can also be done analytically, using

identity (11.4.28) of [8], with a = 2−1/2h−1
det, b = i Âr h

−2
det,

µ = 1/2, and ν = 0 to give

Br(Âr)

Br(0)
= 1F1

(
1

4
, 1,

Â2
r

2h2
det

)
, (6.10)

where 1F1(a, b, z) = M(a, b, z) is the confluent hyperge-
ometric function. Note that 1F1(a, b, 0) = 1 by identity
(13.5.5) of [8]. The overall detection statistic is thus

B(x)

B(0)
= 1F1

(
1

4
, 1,

Â2
r

2h2
det

)
1F1

(
1

4
, 1,

Â2
l

2h2
det

)
. (6.11)

In figure 3 we illustrate the difference between B and

F as detection statistics by plotting, versus Âr(x) and

Âl(x), surfaces of constant B and F , at the same set of
false-alarm probabilities.

B. Comparison to Root-Radius Gaussian
Approximation

We can compare the explicit result (6.11) to the ap-
proximate result (5.37) obtained in section V C by Gaus-
sian integration in root-radius coordinates. Applying the
explicit form (6.7) the Gaussian approximation becomes

Br(Âr)

Br(0)
≈ 2πAh2

det

Â
3/2
r

eFr(Âr) =
23/4

Γ( 1
4 )

(
Âr

hdet

)−3/2

eÂ
2
r/2h

2
det .

(6.12)
We see that this agrees with the general result at large

Âr, since

1F1

(
1

4
, 1,

Â2
r

2h2
det

)
Âr→∞−→ 23/4

Γ( 1
4 )

(
Âr

hdet

)−3/2

eÂ
2
r/2h

2
det

(6.13)
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FIG. 3: Comparison of the B (solid) and F (dashed) statis-
tics at equal false-alarm probabilities. In the simple case of
a diagonal amplitude parameter metric (6.2), we can explic-
itly evaluate the B-statistic via (6.11) and the F-statistic via
(6.5). Because a prior distribution constant in the physical
coordinates {h0, χ, ψ, φ0} weights circular polarization (Ar or
Al small) more heavily does than a prior uniform in the sig-
nal amplitudes {Aµ̆}, we find that nearly circularly-polarized
signals produce a B statistic value more significant than their
F-statistic value, compared to nearly linearly-polarized sig-
nals (for which Ar and Al are comparable).

by identity (13.5.1) of [8]. In figure 4 we plot the exact

form (6.10) of Br(Âr)
Br(0) e

−F(Âr) as well as the limiting form

(6.12).

C. Range of Validity of CPF Coordinate Gaussian
Approximation

Recall that in section V B we expand the combina-
tion Λ(A;x)+α(A) about the maximum-likelihood point

A = Â, where α(A) is the logarithm of the measure of
the B-statistic integral, given by (5.22). Subject to the
simplifying assumptions of this section, the log-likelihood
ratio becomes

Λ(A;x) = F(x)− 1

2h2
det

(
[A1̆ − Â1̆(x)]2 + [A2̆ − Â2̆(x)]2

+ [A3̆ − Â3̆(x)]2 + [A4̆ − Â4̆(x)]2
)

= F(x) + Λr(A1̆,A2̆;x) + Λl(A3̆,A4̆;x)

(6.14)

10−2

10−1

100

101

102

e−
F R

(Â
R
)
B R

(Â
R
)/
B R

(0
)

exact
gaussian approx

10−2 10−1 100 101 102

Â2
R/h

2
det

10−1

100

101

102

103

B R
(Â

R
)/
B R

(0
)

exact
gaussian approx

eFR(ÂR)

FIG. 4: Comparison of the exact form of Br(Âr)
Br(0)

to the result

of the approximate Gaussian integral, both with the factor of

eF(Âr) = eÂr/2h
2
det factored out and without. Note that the

value of the detection statistic matters, because the overall

statistic is B(x) = Br(Âr)Bl(Âl).

and we can examine the behavior of Λr(A1̆,A2̆;x) +

αr(A1̆,A2̆) and Λl(A3̆,A4̆;x) + αl(A3̆,A4̆) separately.
To examine the integral for a particular data realization
x, we can define rotated CPF coordinates

A1̂ = Ar cos(φr − φ̂r) = A1̆ cos φ̂r +A2̆ sin φ̂r (6.15a)

A2̂ = Ar sin(φr − φ̂r) = −A1̆ sin φ̂r +A2̆ cos φ̂r
(6.15b)

so that

Λr(A1̂,A2̂; Âr) + αr(A1̂,A2̂)

= − 1

2h2
det

(
[A1̂ − Âr]2 + [A2̂]2

)
−3

4
ln
(

[A1̂]2 + [A2̂]2
)
.

(6.16)

We can find the stationary points explicitly, since

∂(Λr + αr)

∂A1̂
= −A

1̂ − Âr

h2
det

− 3

2

A1̂

[A1̂]2 + [A2̂]2
(6.17a)

∂(Λr + αr)

∂A2̂
= − A

2̂

h2
det

− 3

2

A2̂

[A1̂]2 + [A2̂]2
(6.17b)
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we see that ∂(Λr+αr)

∂A2̂
= 0 when A2̂ = 0, which means

that the stationary points occur when

− A
1̂ − Âr

h2
det

− 3

2A1̂
= 0 (6.18)

i.e., at the solutions of the quadratic equation

2[A1̂]2 − 2Âr[A1̂] + 3h2
det = 0 (6.19)

which are

A1̂ =
Âr ±

√
Â2

r − 6h2
det

2
(6.20)

Since Λr(A1̂, 0; Âr) + αr(A1̂, 0) goes to +∞ as A1̂ → 0

and −∞ as A1̂ → +∞, it is apparent that A1̂ =
Âr−

√
Â2

r−6h2
det

2 is a local minimum and A1̂ = A1̂
max =

Âr+
√
Â2

r−6h2
det

2 is a local maximum.

We also see that if Âr/hdet <
√

6 ≈ 2.450, there is no
local maximum, only the singularity at the origin of the

{A1̂,A2̂} plane. Note that this condition is actually more
restrictive than the one corresponding to a saddle point
in the quadratic expansion at the maximum likelihood
point. That is determined by the sign of

N1̆1̆ = − 1

h2
det

+
3

2Â2
r

(6.21)

To follow the calculation of section V B, we define

the quadratic expansion of αr(A1̂,A2̂) about a point

(A1̂
0,A2̂

0) as

αquad
r (A1̂,A2̂;A1̂

0,A2̂
0)

= αr(A1̂
0,A2̂

0) + αr,µ̂(A1̂
0,A2̂

0)[Aµ̂ −Aµ̂0 ]

+
1

2
αr,µ̂ν̂(A1̂

0,A2̂
0)[Aµ̂ −Aµ̂0 ][Aν̂ −Aν̂0 ] (6.22)

In particular

αquad
r (A1̂,A2̂;A1̂

0, 0) = −3

2
lnA1̂

0

− 3

2A1̂
0

(A1̂ −A1̂
0) +

3

4[A1̂
0]2

(A1̂ −A1̂
0)2 (6.23)

If Âr/hdet >
√

6 ≈ 2.450, so that A1̂
max =

Âr+
√
Â2

r−6h2
det

2

is a real number, the point (A1̂,A2̂) = (A1̂
max, 0) is a local

maximum of Λ(A1̂,A2̂) + α(A1̂,A2̂), and the quadratic
expression

Λ(A1̂,A2̂) + αquad(A1̂,A2̂;A1̂
max, 0) (6.24)

is an approximation to Λ(A1̂,A2̂) + α(A1̂,A2̂) near its

local maximum at (A1̂,A2̂) = (A1̂
max, 0). This is the sit-

uation illustrated in figure 5, which plots Λ(A1̂, 0; Âr) +

α(A1̂, 0) and its various quadratic approximations when

Âr = 3hdet.
We can always define a quadratic expansion about the

maximum likelihood point (A1̂,A2̂) = (Âr, 0), namely,

Λ(A1̂,A2̂) + αquad(A1̂,A2̂; Âr, 0) =
Â2

r

2h2
det

− 3

2
ln Âr

− 3

2Âr

(A1̂ − Âr) +
1

2

(
3

2[Âr]2
− 1

h2
det

)
(A1̂ − Âr)2

(6.25)

which will have a stationary point at (A1̂,A2̂) =(
Âr

[
6h2

det−2Â2
r

3h2
det−2Â2

r

]
, 0
)

. If Âr/hdet <
√

3/2 ≈ 1.225, this

is a saddle point, as illustrated in figure 6, which plots

Λ(A1̂, 0; Âr)+αquad(A1̂, 0) and the quadratic approxima-

tion Λ(A1̂, 0; Âr) + αquad(A1̂, 0; Âr, 0) when Âr = hdet.
Because the quadratic approximation curves upwards in

the A1̂ direction, it cannot be used to calculate a Gaus-
sian integral.

Figure 7 shows an intermediate value

Âr = 2hdet, where the quadratic approximation

Λr(A1̂,A2̂; Âr) + αquad
r (A1̂,A2̂; Âr, 0) has a local

maximum, but Λr(A1̂,A2̂; Âr) + αr(A) does not.

VII. CONCLUSIONS

We have demonstrated several new sets of coordinates
on the amplitude parameter space of continuous gravita-
tional waves. By taking linear combinations (3.16) of the
usual Jaranowski-Królak-Schutz (JKS) coordinates, we
obtain a set of variables, called CPF (circular polariza-
tion factored) coordinates which are still coefficients in a
linear representation (3.17) of the signal waveform, but
which are more closely connected to the physical ampli-
tude parameters of signal amplitude h0, inclination and
polarization angles ι and ψ, and initial phase φ0. In par-
ticular, these new coordinates divide naturally into two
pairs of Cartesian-like coordinates (one corresponding to
left- and one to right-circular polarization), and the po-
lar coordinates (3.22) on these two subspaces, which we
call CPF-polar coordinates, are closely connected to the
physical amplitude parameters: the radial coordinates
Ar and Al are functions of h0 and χ = cos ι, while the
angular coordinates φr and φl are functions of ψ and
φ0, as shown in (3.23). We also introduce so-called root-
radius coordinates {xr, yr, xl, yl}, derived from polar co-

ordinates {rr = A
1/4
r , φr, rl = A

1/4
l , φl}, which have the

simplifying feature that the Jacobian of the transforma-
tion between root-radius coordinates and the physical co-
ordinates {h0, χ = cos ι, ψ, φ0} is a constant.

We have presented several demonstrations of the util-
ity of these new coordinates. They can be used in a sim-
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FIG. 5: Quadratic approximations to Λr(A1̂, 0; Âr) +

αr(A1̂, 0) when Âr = 3hdet, as a function of the rotated

CPF coordinate A1̂ = Ar cos(φr− φ̂r) defined in (6.15), along

the line A2̂ = Ar sin(φr − φ̂r) = 0. We show two different

quadratic approximations: one based on expanding αr(A1̂, 0)

about the maximum likelihood point A1̂ = Âr = 3hdet

and the other about A1̂
max = 3+

√
3

2
≈ 2.366hdet, at which

Λr(A1̂, 0; Âr) + αr(A1̂, 0) has a local maximum. [Note that

Λr(A1̂,A2̂; Âr) + αquad
r (A1̂,A2̂; Âr, 0) has a local maximum

at (A1̂,A2̂) = (2.4hdet, 0).]
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FIG. 6: Quadratic approximation to Λr(A1̂, 0; Âr)+αr(A1̂, 0)

when Âr = hdet. Here Λr(A1̂, 0; Âr) + αr(A1̂, 0) has no local

maximum, only the singularity at A1̂ = 0, and the station-

ary point of Λr(A1̂,A2̂; Âr) +αquad
r (A1̂,A2̂; Âr, 0), located at

(A1̂,A2̂) = (4hdet, 0), is a saddle point, since it curves up-

wards in the A1̂ direction and downward in the A2̂ direction.
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ΛR(A1̂, 0; ÂR) + αquad
R (A1̂, 0; ÂR, 0)

FIG. 7: Quadratic approximation to Λr(A1̂, 0; Âr) +

αr(A1̂, 0) when Âr = 2hdet. Even though Λr(A1̂, 0; Âr) +

αr(A1̂, 0) has no local maximum, the quadratic approxima-

tion Λr(A1̂,A2̂; Âr) + αquad
r (A1̂; Âr, 0) has a local maximum

at (A1̂,A2̂) = (0.8hdet, 0). However, it is not a useful approx-
imation to the original function for evaluating the integral,
even though it is accurate close to the maximum likelihood

point A1̂ = 2hdet.

ple derivation of the Jacobian determinant (4.8) for the
transformation between JKS and physical coordinates
(previously computed using computer algebra). The co-
ordinate singularities and ambiguities in physical param-
eters associated with right or left circular polarization
can be understood as the origins of the two polar coor-
dinate systems, (4.13) and (4.14), respectively. Finally,
if we express in these coordinates the log-likelihood ra-
tio between models of Gaussian noise with and without
a continuous gravitational-wave signal, we can obtain re-
sults useful for the calculation of the B-statistic, which is
the Bayes factor for a comparison between the models.

Past work[2] has shown that if an unphysical prior is
used for the B-statistic integral, an explicit Gaussian inte-
gration in JKS coordinates (for which there is a straight-
forward equivalent in CPF coordinates) shows that the B
statistic is equivalent to the F statistic. If a more physi-
cally reasonable prior is used, in particular one isotropic
in the orientation angles ι and ψ, the resulting Jacobian
factor complicates the evaluation of the integral. We
limited attention to the case where the prior is uniform
in the physical coordinates {h0, χ = cos ι, ψ, φ0}, and
showed that the coordinate singularities in the resulting
measure make even an approximate Gaussian integra-
tion in CPF (or JKS) coordinates problematic. We have
showed that an approximate Gaussian integration can
be performed in root-radius coordinates, with the result

that, up to an irrelevant constant lnB ≈ F − 3
2 ln(ÂrÂl)

where Âr and Âl are the maximum-likelihood estimates
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of the CPF-polar radial coordinates Ar = h0

(
1+χ

2

)2
and

Al = h0

(
1−χ

2

)2
. This provides insights into the B statis-

tic in the regime where the signal is strong and not too
close to circular polarization. Finally, we considered the
B-statistic in the physical coordinates themselves and
showed that two of the four integrals could be performed
exactly.

To gain more explicit insight into the behavior of the
various B-statistic integrals, we considered a special case
where the amplitude parameter metric is diagonal, and
showed that the simple form of the log-likelihood ratio in
this case allowed the integrals to be performed analyti-
cally in CPF-polar coordinates, leading to an explicit ex-
act result (6.11) in terms of the confluent hypergeometric
function. This could then be compared to the approxi-
mate result from the Gaussian expansion in root-radius
coordinates to show the breakdown of the approximation
for weak or nearly-circularly-polarized signals.
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Appendix A: Explicit form of Amplitude Parameter
Metric

The explicit forms of the matrix elements (5.5) can be
obtained explicitly by dividing the data from each detec-
tor X into short stretches of data [tl, tl + Tsft) of length
Tsft and Fourier transformed (hence usually referred to
as “Short Fourier Transforms”, or SFTs). For a nearly
monochromatic signal around frequency f0, we can define
the usual (multi-detector) scalar product as

(x|y) ≡
∑

Xl

4

SXl (f0)
Re

∫ ∞

0

x̃X∗l (f) ỹXl (f) df , (A1)

where SXl (f0) is the one-sided noise power spectral den-
sity around the frequency f0 in detector X during time
stretch l, and x̃Xl , ỹ

X
l are the corresponding Fourier-

transforms of xX(t), yX(t) restricted to the SFT time-
stretch l.

The explicit form of the scalar basis functions over each
SFT time stretch t ∈ [tl, tl + Tsft), defined according to

(2.10) as h̃Xµ,l(f) ≡ h̃
↔
X
µ,l(f) : d

↔
X
l (f), can be given in the

time-domain as

hX1,l(t) = aXl (f0) cosφX(t) , (A2a)

hX2,l(t) = bXl (f0) cosφX(t) , (A2b)

hX3,l(t) = aXl (f0) sinφX(t) , (A2c)

hX4,l(t) = bXl (f0) sinφX(t) , (A2d)

where we defined the shorthand φX(t) ≡ φ(τX(t)), and
where the frequency-dependent complex AM coefficients

for time stretch l are (see (2.14)) aXl (f) = ε↔+ : d
↔
l(f) and

bXl (f) = ε↔× : d
↔
l(f), respectively. These reduce to the

real-valued constants aXl and bXl in the long-wavelength
limit. Using this together with the definition of the
amplitude-parameter metric (5.4) and (5.5) we find

A =
∑

Xl

Tsft

SXl (f0)

∣∣aXl (f0)
∣∣2 , (A3a)

B =
∑

Xl

Tsft

SXl (f0)

∣∣bXl (f0)
∣∣2 , (A3b)

C =
∑

Xl

Tsft

SXl (f0)
Re
[
aX∗l (f0) bXl (f0)

]
, (A3c)

E =
∑

Xl

Tsft

SXl (f0)
Im
[
aX∗l (f0) bXl (f0)

]
, (A3d)

The explicit forms of the matrix elements Mµ̆ν̆ =
(hµ̆|hν̆) can be obtained by using either (3.18) or (3.20),
namely

I = A+B + 2E =
∑

Xl

Tsft

SXl (f0)

∣∣aXl,l(f0)
∣∣2 , (A4a)

J = A+B − 2E =
∑

Xl

Tsft

SXl (f0)

∣∣aXr,l(f0)
∣∣2 , (A4b)

K = 2C =
∑

Xl

Tsft

SXl (f0)
Re
[
aX∗l,l (f0) aXr,l(f0)

]
, (A4c)

L = A−B =
∑

Xl

Tsft

SXl (f0)
Im
[
aX∗l,l (f0)aXr,l(f0)

]
, (A4d)

where

aXr,l(f0) = ε↔r : d
↔
X
l (f0) = aXl (f0) + ibXl (f0) , (A5a)

aXl,l(f0) = ε↔l : d
↔
X
l (f0) = aXl (f0)− ibXl (f0) . (A5b)

Note that only in the long-wavelength limit we have
aX∗r,l = aXl,l and therefore also I = J .

Note that the scalar CPF waveforms of (3.18),(3.20)



17

can be obtained as

hX
1̆,l

(t) =
1

2

(
aXr,l(f0) e−iφ

X(t) + aXl,l(f0) eiφ
X(t)

)
, (A6a)

hX
2̆,l

(t) =
1

2i

(
aXr,l(f0) e−iφ

X(t) − aXl,l(f0) eiφ
X(t)

)
,

(A6b)

hX
3̆,l

(t) =
1

2

(
aXl,l(f0) e−iφ

X(t) + aXr,l(f0) eiφ
X(t)

)
, (A6c)

hX
4̆,l

(t) =
1

2i

(
aXl,l(f0) e−iφ

X(t) + aXr,l(f0) eiφ
X(t)

)
,

(A6d)

which does not share the simple form of (3.20), as the

detector tensor d
↔
X
l (f) is generally complex. However,

the detector response in the time-domain is real-valued,

and therefore d
↔
X∗
l (f) = d

↔
X
l (−f), and also aX∗r,l (f) =

aXl,l(−f).

Appendix B: Hyperbolic coordinates

Here we present an additional coordinate systems
which has the simplifying feature that the Jacobian
to transfer between it and the physical coordinates
{h0, χ, ψ, φ0} is a constant.

If we consider the amplitudes

A+ =
h0

2
(1 + χ2) and A× = h0χ (B1)

and note that

A2
+ −A2

× =
h2

0

4
(1− χ2)2 > 0 (B2)

it seems natural to define

H =
√
A2

+ −A2
× =

h0

2
(1− χ2) (B3a)

η =
1

2
ln
A+ +A×
A+ −A×

= ln
1 + χ

1− χ (B3b)

so that

A+ = H cosh η and A× = H sinh η . (B4)

We can invert the coordinate transformations to show

h0 = H(1 + cosh η) and χ = tanh
η

2
. (B5)

The Jacobians between {A+, A×} and the two coordi-
nate systems {h0, χ} and {H, η} give

H dH dη = dA+ dA× =
h0

2
(1− χ2) dh0 dχ (B6)

from which we see

dH dη = dh0 dχ (B7)
Note that in these hyperbolic coordinates, circular po-

larization is not represented by finite coordinate values.
As χ→ 1 at finite h0, H → 0 and η →∞ so that

A+ → H
eη

2
A× → H

eη

2
. (B8)

As χ→ −1 at finite h0, H → 0 and η → −∞ so that

A+ → H
e−η

2
A× → −H

e−η

2
. (B9)
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