740 research outputs found
Cricket, migration and diasporic communities
Ever since different communities began processes of global migration, sport has been an integral feature in how we conceptualise and experience the notion of being part of a diaspora. Sport provides diasporic communities with a powerful means for creating transnational ties, but also shapes ideas of their ethnic and racial identities. In spite of this, theories of diaspora have been applied sparingly to sporting discourses. Due mainly to its central role in spreading dominant white racial narratives within the British Empire, and the various ways different ethnic groups have âplayedâ with the meanings and associations of the sport in the (post-)colonial period, cricket is an interesting focus for academic research. Despite W.G. Graceâs claim that cricket advances civilisation by promoting a common bond, binding together peoples of vastly different backgrounds, to this day cricket operates strict symbolic boundaries; defining those who do, and equally, do not belong. C.L.R. Jamesâ now famous metaphor of looking âbeyond the boundaryâ captures the belief that, to fully understand the significance of cricket, and the sportâs roles in changing and shaping society, one must consider the wider social and political contexts within which the game is played. The collection of papers in this special issue does just that. Cricket acts as the point of departure in each, but the way in which ideas of power, representation and inequality are âplayed outâ is unique in each
Atom gratings produced by large angle atom beam splitters
An asymptotic theory of atom scattering by large amplitude periodic
potentials is developed in the Raman-Nath approximation. The atom grating
profile arising after scattering is evaluated in the Fresnel zone for
triangular, sinusoidal, magneto-optical, and bichromatic field potentials. It
is shown that, owing to the scattering in these potentials, two
\QTR{em}{groups} of momentum states are produced rather than two distinct
momentum components. The corresponding spatial density profile is calculated
and found to differ significantly from a pure sinusoid.Comment: 16 pages, 7 figure
Coherent information analysis of quantum channels in simple quantum systems
The coherent information concept is used to analyze a variety of simple
quantum systems. Coherent information was calculated for the information decay
in a two-level atom in the presence of an external resonant field, for the
information exchange between two coupled two-level atoms, and for the
information transfer from a two-level atom to another atom and to a photon
field. The coherent information is shown to be equal to zero for all
full-measurement procedures, but it completely retains its original value for
quantum duplication. Transmission of information from one open subsystem to
another one in the entire closed system is analyzed to learn quantum
information about the forbidden atomic transition via a dipole active
transition of the same atom. It is argued that coherent information can be used
effectively to quantify the information channels in physical systems where
quantum coherence plays an important role.Comment: 24 pages, 7 figs; Final versiob after minor changes, title changed;
to be published in Phys. Rev. A, September 200
Early Stages of Homopolymer Collapse
Interest in the protein folding problem has motivated a wide range of
theoretical and experimental studies of the kinetics of the collapse of
flexible homopolymers. In this Paper a phenomenological model is proposed for
the kinetics of the early stages of homopolymer collapse following a quench
from temperatures above to below the theta temperature. In the first stage,
nascent droplets of the dense phase are formed, with little effect on the
configurations of the bridges that join them. The droplets then grow by
accreting monomers from the bridges, thus causing the bridges to stretch.
During these two stages the overall dimensions of the chain decrease only
weakly. Further growth of the droplets is accomplished by the shortening of the
bridges, which causes the shrinking of the overall dimensions of the chain. The
characteristic times of the three stages respectively scale as the zeroth, 1/5
and 6/5 power of the the degree of polymerization of the chain.Comment: 11 pages, 3 figure
Polymerized bovine hemoglobin solution as a replacement for allogeneic red blood cell transfusion after cardiac surgery: Results of a randomized, double-blind trial
AbstractBackground: Blood loss leading to reduced oxygen-carrying capacity is usually treated with red blood cell transfusions. This study examined the hypothesis that a hemoglobin-based oxygen-carrying solution can serve as an initial alternative to red blood cell transfusion. Methods: In a randomized, double-blind efficacy trial of HBOC-201, a total of 98 patients undergoing cardiac surgery and requiring transfusion were randomly assigned to receive either red blood cell units or HBOC-201 (Hemopure; Biopure Corporation, Cambridge, Mass) for the first three postoperative transfusions. Patients were monitored before and after transfusion, at discharge, and at 3 to 4 weeks after the operation for subsequent red blood cell use, hemodynamics, and clinical laboratory parameters. Results: The use of HBOC-201 eliminated the need for red blood cell transfusions in 34% of cases (95% confidence interval 21%-49%). Patients in the HBOC group received a mean of 1.72 subsequent units of red blood cells; those who received red blood cells only received a mean of 2.19 subsequent units (P =.05). Hematocrit values were transiently lower in the HBOC group but were similar in the two groups at discharge and follow-up. Oxygen extraction was greater in the HBOC group (P =.05). Mean increases in blood pressure were greater in the HBOC group, but not significantly so. Conclusion: HBOC-201 may be an initial alternative to red blood cell transfusions for patients with moderate anemia after cardiac surgery. In a third of cases, HBOC-201 eliminated the need for red blood cell transfusion, although substantial doses were needed to produce this modest degree of blood conservation.J Thorac Cardiovasc Surg 2002;124:35-4
Particle size control of detergents in mixed flow spray dryers
Particle size is a key quality parameter of a powder detergent as it determines its performance, the bulk density and the look and feel of the product. Consequently, it is essential that particle size is controlled to ensure the consistency of performance when comparing new formulations. The majority of study reported in the literature relating to particle size control, focuses on the spray produced by the atomisation technique. One approach advocated to achieve particle size control is the manipulation of the ratio of the mass slurry rate and mass flow rate of gas used for atomisation. Within this study, ratio control was compared with an automatic cascade loop approach using online measurements of the powder particle size on a small-scale pilot plant. It was concluded that cascade control of the mean particle size, based on manipulating the mass flow rate of gas, resulted in tighter, more responsive control. The effect of a ratio change varied with different formulations and different slurry rates. Furthermore, changes in slurry rate caused complications, as the impact on particle size growth in the dryer is non-linear and difficult to predict. The cascade loop enables further study into the effect of particle size on detergent performance
A Parametric Study of Erupting Flux Rope Rotation. Modeling the "Cartwheel CME" on 9 April 2008
The rotation of erupting filaments in the solar corona is addressed through a
parametric simulation study of unstable, rotating flux ropes in bipolar
force-free initial equilibrium. The Lorentz force due to the external shear
field component and the relaxation of tension in the twisted field are the
major contributors to the rotation in this model, while reconnection with the
ambient field is of minor importance. Both major mechanisms writhe the flux
rope axis, converting part of the initial twist helicity, and produce rotation
profiles which, to a large part, are very similar in a range of shear-twist
combinations. A difference lies in the tendency of twist-driven rotation to
saturate at lower heights than shear-driven rotation. For parameters
characteristic of the source regions of erupting filaments and coronal mass
ejections, the shear field is found to be the dominant origin of rotations in
the corona and to be required if the rotation reaches angles of order 90
degrees and higher; it dominates even if the twist exceeds the threshold of the
helical kink instability. The contributions by shear and twist to the total
rotation can be disentangled in the analysis of observations if the rotation
and rise profiles are simultaneously compared with model calculations. The
resulting twist estimate allows one to judge whether the helical kink
instability occurred. This is demonstrated for the erupting prominence in the
"Cartwheel CME" on 9 April 2008, which has shown a rotation of \approx 115
degrees up to a height of 1.5 R_sun above the photosphere. Out of a range of
initial equilibria which include strongly kink-unstable (twist Phi=5pi), weakly
kink-unstable (Phi=3.5pi), and kink-stable (Phi=2.5pi) configurations, only the
evolution of the weakly kink-unstable flux rope matches the observations in
their entirety.Comment: Solar Physics, submitte
Homologous Flares and Magnetic Field Topology in Active Region NOAA 10501 on 20 November 2003
We present and interpret observations of two morphologically homologous
flares that occurred in active region (AR) NOAA 10501 on 20 November 2003. Both
flares displayed four homologous H-alpha ribbons and were both accompanied by
coronal mass ejections (CMEs). The central flare ribbons were located at the
site of an emerging bipole in the center of the active region. The negative
polarity of this bipole fragmented in two main pieces, one rotating around the
positive polarity by ~ 110 deg within 32 hours. We model the coronal magnetic
field and compute its topology, using as boundary condition the magnetogram
closest in time to each flare. In particular, we calculate the location of
quasiseparatrix layers (QSLs) in order to understand the connectivity between
the flare ribbons. Though several polarities were present in AR 10501, the
global magnetic field topology corresponds to a quadrupolar magnetic field
distribution without magnetic null points. For both flares, the photospheric
traces of QSLs are similar and match well the locations of the four H-alpha
ribbons. This globally unchanged topology and the continuous shearing by the
rotating bipole are two key factors responsible for the flare homology.
However, our analyses also indicate that different magnetic connectivity
domains of the quadrupolar configuration become unstable during each flare, so
that magnetic reconnection proceeds differently in both events.Comment: 24 pages, 10 figures, Solar Physics (accepted
Anthropogenic Space Weather
Anthropogenic effects on the space environment started in the late 19th
century and reached their peak in the 1960s when high-altitude nuclear
explosions were carried out by the USA and the Soviet Union. These explosions
created artificial radiation belts near Earth that resulted in major damages to
several satellites. Another, unexpected impact of the high-altitude nuclear
tests was the electromagnetic pulse (EMP) that can have devastating effects
over a large geographic area (as large as the continental United States). Other
anthropogenic impacts on the space environment include chemical release ex-
periments, high-frequency wave heating of the ionosphere and the interaction of
VLF waves with the radiation belts. This paper reviews the fundamental physical
process behind these phenomena and discusses the observations of their impacts.Comment: 71 pages, 35 figure
- âŠ