3,069 research outputs found

    ‘My favourite things to do’ and ‘my favourite people’: Exploring salient aspects of children’s self-concept

    Get PDF
    This study explores the potential of the ‘draw-and-write’ method for inviting children to communicate salient aspects of their self-concept. Irish primary school children aged 10–13 years drew and wrote about their favourite people and things to do (social and active self). Children drew and described many salient activities (39 in total) and people – including pets. Results suggest that widely used, adult-constructed self-esteem scales for children, while multidimensional, are limited, and that ‘draw-and-write’ is an effective multimodal method with which children can express their social and active self-concepts

    Geology of Exeter and its environs

    Get PDF
    A 225 km² area around Exeter, described in this report, extends from the villages of Brampford Speke and Whimple in the north to Aylesbeare, Exminster and Woodbury in the south. It is underlain by Carboniferous, Permian, and Triassic solid formations and by a variety of Quaternary superficial deposits. The Namurian Crackington Formation comprises mainly tightly folded shales with subordinate sandstone interbeds. The Permian rocks consist of a lower, predominantly: breccia, sequence (Whipton Formation, Teignmouth Breccia, Monkerton Member) that thins and disappears northwards against a possibly fault-controlled ridge of Crackington Formation; the breccias are overlain by sandstones and mudstones (Dawlish Sandstone and Aylesbeare Mudstone). Volcanic rocks occur at the base of the Permian sequence and possibly within the Dawlish Sandstone. The latter splits into five alternating sandstone and mudstone members when traced northwards from Exeter into the Crediton Trough (an area of thick Permian sediments). The Aylesbeare Mudstone is divisible south of Aylesbeare into two members, the lower containing impersistent sandstones. It is overlain by the basal Triassic gravels (Budleigh Salterton Pebble Beds) which are in turn succeeded by the Otter Sandstone

    Prospects for a high field ITER device

    Get PDF

    The genetic structure of Nautilus pompilius populations surrounding Australia and the Philippines.

    Get PDF
    Understanding the distribution of genetic diversity in exploited species is fundamental to successful conservation. Genetic structure and the degree of gene flow among populations must be assessed to design appropriate strategies to prevent the loss of distinct populations. The cephalopod Nautilus pompilius is fished unsustainably in the Philippines for the ornamental shell trade and has limited legislative protection, despite the species' recent dramatic decline in the region. Here, we use 14 microsatellite markers to evaluate the population structure of N. pompilius around Australia and the Philippines. Despite their relative geographical proximity, Great Barrier Reef individuals are genetically isolated from Osprey Reef and Shark Reef in the Coral Sea (FST =0.312, 0.229, respectively). Conversely, despite the larger geographical distances between the Philippines and west Australian reefs, samples display a small degree of genetic structure (FST =0.015). Demographic scenarios modelled using approximate Bayesian computation analysis indicate that this limited divergence is not due to contemporary gene flow between the Philippines and west Australia. Instead, present-day genetic similarity can be explained by very limited genetic drift that has occurred due to large average effective population sizes that persisted at both locations following their separation. The lack of connectivity among populations suggests that immigrants from west Australia would not facilitate natural recolonization if Philippine populations were fished to extinction. These data help to rectify the paucity of information on the species' biology currently inhibiting their conservation classification. Understanding population structure can allow us to facilitate sustainable harvesting, thereby preserving the diversity of genetically distinct stocks. This article is protected by copyright. All rights reserved

    Neuroendocrine Pathways Mediating Nutritional Acceleration of Puberty: Insights from Ruminant Models

    Get PDF
    The pubertal process is characterized by an activation of physiological events within the hypothalamic-adenohypophyseal–gonadal axis which culminate in reproductive competence. Excessive weight gain and adiposity during the juvenile period is associated with accelerated onset of puberty in females. The mechanisms and pathways by which excess energy balance advances puberty are unclear, but appear to involve an early escape from estradiol negative feedback and early initiation of high-frequency episodic gonadotropin-releasing hormone (GnRH) secretion. Hypothalamic neurons, particularly neuropeptide Y and proopiomelanocortin neurons are likely important components of the pathway sensing and transmitting metabolic information to the control of GnRH secretion. Kisspeptin neurons may also have a role as effector neurons integrating metabolic and gonadal steroid feedback effects on GnRH secretion at the time of puberty. Recent studies indicate that leptin-responsive neurons within the ventral premammillary nucleus play a critical role in pubertal progression and challenge the relevance of kisspeptin neurons in this process. Nevertheless, the nutritional control of puberty is likely to involve an integration of major sensor and effector pathways that interact with modulatory circuitries for a fine control of GnRH neuron function. In this review, observations made in ruminant species are emphasized for a comparative perspective

    On rr-Simple kk-Path

    Full text link
    An rr-simple kk-path is a {path} in the graph of length kk that passes through each vertex at most rr times. The rr-SIMPLE kk-PATH problem, given a graph GG as input, asks whether there exists an rr-simple kk-path in GG. We first show that this problem is NP-Complete. We then show that there is a graph GG that contains an rr-simple kk-path and no simple path of length greater than 4logk/logr4\log k/\log r. So this, in a sense, motivates this problem especially when one's goal is to find a short path that visits many vertices in the graph while bounding the number of visits at each vertex. We then give a randomized algorithm that runs in time poly(n)2O(klogr/r)\mathrm{poly}(n)\cdot 2^{O( k\cdot \log r/r)} that solves the rr-SIMPLE kk-PATH on a graph with nn vertices with one-sided error. We also show that a randomized algorithm with running time poly(n)2(c/2)k/r\mathrm{poly}(n)\cdot 2^{(c/2)k/ r} with c<1c<1 gives a randomized algorithm with running time \poly(n)\cdot 2^{cn} for the Hamiltonian path problem in a directed graph - an outstanding open problem. So in a sense our algorithm is optimal up to an O(logr)O(\log r) factor

    Methods for the recognition of geological weakness zones and other surface discontinuities caused by underground mining in Carboniferous terrain

    Get PDF
    Since March 1992 the British Geological Survey (BGS) has collaborated in a CEC part-funded project under the leadership of Dr Clasen of Saarberg, Saarbrueken, Germany. The aim of this project was to determine the most efficient combination of surface geophysical techniques to be used in combination with airborne optical scanning data for the routine detection of shallow faults. Such features, when reactivated following undermining, may become the locii of damaging subsidence, but where they can be traced in advance of mining operations then remedial measures (such as underpinning etc) may be undertaken. This final report outlines the geophysical methods applied and describes our most significant results. Conclusions are drawn concerning the relative efficiencies of each technique and possible complementary applications

    Young star clusters in M31

    Full text link
    In our study of M31's globular cluster system with MMT/Hectospec, we have obtained high-quality spectra of 85 clusters with ages less than 1 Gyr. With the exception of Hubble V, the young cluster in NGC 205, we find that these young clusters have kinematics and spatial distribution consistent with membership in M31's young disk. Preliminary estimates of the cluster masses and structural parameters, using spectroscopically derived ages and HST imaging, confirms earlier suggestions that M31 has clusters similar to the LMC's young populous clusters.Comment: 4 pages, 1 figure, contributed talk at "Galaxies in the Local Volume" conference in Sydney, July 200

    Reference genome assembly for Australian Ascochyta rabiei Isolate ArME14

    Get PDF
    Ascochyta rabiei is the causal organism of ascochyta blight of chickpea and is present in chickpea crops worldwide. Here we report the release of a high-quality PacBio genome assembly for the Australian A. rabiei isolate ArME14. We compare the ArME14 genome assembly with an Illumina assembly for Indian A. rabiei isolate, ArD2. The ArME14 assembly has gapless sequences for nine chromosomes with telomere sequences at both ends and 13 large contig sequences that extend to one telomere. The total length of the ArME14 assembly was 40,927,385 bp, which was 6.26 Mb longer than the ArD2 assembly. Division of the genome by OcculterCut into GC-balanced and AT-dominant segments reveals 21% of the genome contains gene-sparse, AT-rich isochores. Transposable elements and repetitive DNA sequences in the ArME14 assembly made up 15% of the genome. A total of 11,257 protein-coding genes were predicted compared with 10,596 for ArD2. Many of the predicted genes missing from the ArD2 assembly were in genomic regions adjacent to AT-rich sequence. We compared the complement of predicted transcription factors and secreted proteins for the two A. rabiei genome assemblies and found that the isolates contain almost the same set of proteins. The small number of differences could represent real differences in the gene complement between isolates or possibly result from the different sequencing methods used. Prediction pipelines were applied for carbohydrate-active enzymes, secondary metabolite clusters and putative protein effectors. We predict that ArME14 contains between 450 and 650 CAZymes, 39 putative protein effectors and 26 secondary metabolite clusters
    corecore