2,357 research outputs found

    Toward integrated conservation of North America's crop wild relatives

    Get PDF
    North America harbors a rich native flora of crop wild relatives—the progenitors and closely related species of domesticated plants—as well as a range of culturally significant wild utilized plants. Despite their current and potential future value, they are rarely prioritized for conservation efforts; thus many species are threatened in their natural habitats, and most are underrepresented in plant genebanks and botanical gardens. Further coordination of efforts among land management, botanical, and agricultural science organizations will improve conservation and general public awareness with regard to these species. We present examples of productive collaborations focused on wild cranberries (Vaccinium macrocarpon and Vaccinium oxycoccos) and chile peppers (Capsicum annuum var. glabriusculum). We then discuss five shared priorities for further action: (1) understand and document North America's crop wild relatives and wild utilized plants, (2) protect threatened species in their natural habitats, (3) collect and conserve ex situ the diversity of prioritized species, (4) make this diversity accessible and attractive for plant breeding, research, and education, and (5) raise public awareness of their value and the threats to their persistence

    Reduction of rheniumV oxo Schiff base complexes with triethylphosphine

    Get PDF
    Abstract only availablePioneering techniques for therapeutic treatment of cancers involve targeting cancer sites with strong beta-emitting radionuclides, thereby destroying the cancer cells. This is achieved by coordinating the radioisotope to a very chemically stable environment and linking it to a specific biologically active targeting molecule, which interacts with particular cancer cells. Radioactive isotopes of rhenium possess characteristics of such a nuclide. The focus of our research is to investigate two possible pathways for the reaction of [ReOX(Schiff base)] with phosphine ligands, one a mono-substituted ReV complex and one a di-substituted ReIII complex. The preferred ReIII complex is lower in oxidation state and more kinetically inert or stable relative to ReV. For practical applications it is necessary to have an extremely stable in vivo radionuclide complex which can be conjugated to a suitable biological targeting agent. The rigid sal2phen ligand, where Sal2phen is a tetradentate Schiff base ligand, was investigated to determine if the ReIII could be synthesized from the ReV starting complex [ReVOCl(Sal2phen)]. [ReVOCl(Sal2phen)] was reacted with triethylphosphine (PEt3) in attempts to yield the ReIII complex trans-[ReIII(PEt3)2(Sal2phen)][X]. Previous work indicated that the strongly reducing and strongly nucleophilic PEt3 might yield the ReV product from [ReVOCl(Sal2phen)]. The synthesized coordinated complex was reacted with an quaternary ammonium salt, ammonium hexaflurophosphate (NH4PF6), to induce crystallization of target compound [ReIII(PEt3)2(Sal2phen)][PF6]. Preliminary 1H-NMR, 31P-NMR, and infrared spectroscopy spectra indicate the formation of cis-[ReVO(PPh3)(Sal2phen)][X]. FTIR shows the presence of the Rhenium oxo group; 31P-NMR and 1H-NMR indicate the presence of ReV and a 1:1 PEt3 : Sal2phen complex. Single crystal x-ray diffraction, mass spectroscopy, and elemental analysis are additional methods of characterization.NSF-REU/NIH Program in Radiochemistr

    Reduction of rhenium (V) oxo Schiff Base Complexes with triphenyl phosphine ligands

    Get PDF
    Abstract only availableOne approach to the treatment of cancer is to direct beta-emitting radionuclide to the cancer site where the radiation destroys the cancer cells. This can be achieved by coordinating the radioisotope in a very stable environment and linking it to a specific biological targeting molecule, which interacts specifically with particular cancer cells. It is necessary to have extremely stable in vivo radionuclide complexes so that limited amounts of radiation are released to other parts of the body before the radionuclide can reach the cancer cells. Isotopes of radioactive Rhenium are characteristic of such a nuclide. Our emphasis was to obtain a Rhenium (III) metal ligand complex since the lower oxidation state is more kinetically inert relative to Rhenium (V). The method employed was to first produce the ReV-ligand complex, [ReVOCl(Sal2phen)], by reacting a 1:2 molar ratio of TBA[ReVIIOCl4] to Sal2phen. Next, [ReVOCl(Sal2phen)] was reacted with three equivalents of triphenylphosphine to determine whether a mono-substituted ReV complex or a di-substituted ReIII complex was formed. After purifying the product by solvent extraction, the coordinated complex was reacted with ammonium hexaflurophoshate, NH4PF6, to induce crystallization of the target compound, [ReIII(PPh3)2(Sal2phen)][PF6]. Preliminary 1H NMR, and FT-IT spectra suggest formation of trans-[ReIII(PPh3)2(sal2phen)]PF6. The Re=O stretch at 951.36 cm-1 observed for [ReOCl(sal2phen)] in the IR spectrum is missing from our product, implying the Re (III) product has been formed.Stevens' Chemistry Progra

    Electro-kinetic technology as a low-cost method for dewatering food by-product

    Get PDF
    Increasing volumes of food waste, intense environmental awareness, and stringent legislation have imposed increased demands upon conventional food waste management. Food byproducts that were once considered to be without value are now being utilized as reusable materials, fuels, and energy in order to reduce waste. One major barrier to the valorization of food by-products is their high moisture content. This has brought about the necessity of dewatering food waste for any potential re-use for certain disposal options. A laboratory system for experimentally characterizing electro-kinetic dewatering of food by-products was evaluated. The bench scale system, which is an augmented filter press, was used to investigate the dewatering at constant voltage. Five food by-products (brewer’s spent grain, cauliflower trimmings, mango peel, orange peel, and melon peel) were studied. The results indicated that electro-kinetic dewatering combined with mechanical dewatering can reduce the percentage of moisture from 78% to 71% for brewer’s spent grain, from 77% to 68% for orange peel, from 80% to 73% for mango peel, from 91% to 74% for melon peel, and from 92% to 80% for cauliflower trimmings. The total moisture reduction showed a correlation with electrical conductivity (R2¼0.89). The energy consumption of every sample was evaluated and was found to be up to 60 times more economical compared to thermal processing

    Enhancing Collaborative Practices with Preprofessional Occupational Therapists and Early Childhood Special Education Student Teachers: A Pilot Study

    Get PDF
    This article presents the Collaborative Design Model as a tool for developing collaboration and self-efficacy for preprofessional educators and service providers. As student populations continue to become more diverse, preprofessionals entering the classroom must be prepared to collaborate with colleagues effectively and efficiently to address the variety of needs presented in the classroom. Little research exists on the collaboration among preprofessional teachers and preprofessional occupational therapists. The proposed model provides a method for supporting preprofessionals in collaborating to meet the needs of students at risk for or with disabilities. Initial pilot findings suggest the Collaborative Design Model could potentially increase self-efficacy and collaboration skills for preprofessionals working in the classroom

    Age-Stratified QTL Genome Scan Analyses for Anthropometric Measures

    Get PDF
    With the availability of longitudinal data, age-specific (stratified) or age-adjusted genetic analyses have the potential to localize different putative trait influencing loci. If age does not influence the locus-specific penetrance function within the range examined, age-stratified analyses will tend to yield comparable results for an individual trait. However, age-stratified results should vary across age strata when the locus-specific penetrance function is age dependent. In this paper, age-stratified and age-adjusted quantitative trait loci (QTL) linkage analyses were contrasted for height, weight, body mass index (BMI), and systolic blood pressure on a subset of the Framingham Heart Study. The strata comprised individuals with data present in each of three age groups: 31–49, 50–60, 61–79. Genome-wide QTL analyses were performed using SOLAR. Over all ages, a linkage signal for height was detected on chromosome 14q11.2 near marker GATA74E02A (LOD for ages 31–49 = 2.38, LOD for ages 50–60 = 1.84, LOD for ages 61–79 = 2.45). Evidence of linkage to BMI in the 31–49 age group was found on chromosome 3q22 (GATA3C02, LOD = 2.89, p = 0.0003) at the same location as the signal for weight (LOD = 3.10, p = 0.0002). Linkage was also supported on chromosome 1p22.1 for BMI (LOD = 2.21, p = 0.0014) and weight (LOD = 2.47, p = 0.0007) in the 31–49 age group. Our age-stratified results suggest that QTL that are expressed over long periods of time and affecting multiple, correlated traits may be identified using genome scan and variance-component methodology to help detect early and/or late gene expression
    corecore