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Abstract

Adiponectin, an adipose derived hormone with pleiotropic functions, binds to several proteins, including T-cadherin. We
have previously reported that adiponectin deficient (Adipo2/2) mice have increased IL-17A-dependent neutrophil
accumulation in their lungs after subacute exposure to ozone (0.3 ppm for 72 hrs). The purpose of this study was to
determine whether this anti-inflammatory effect of adiponectin required adiponectin binding to T-cadherin. Wildtype,
Adipo2/2, T-cadherin deficient (T-cad2/2), and bideficient (Adipo2/2/T-cad2/2) mice were exposed to subacute ozone or air.
Compared to wildtype mice, ozone-induced increases in pulmonary IL-17A mRNA expression were augmented in T-cad2/2

and Adipo2/2 mice. Compared to T-cad2/2 mice, there was no further increase in IL-17A in Adipo2/2/T-cad2/2 mice,
indicating that adiponectin binding to T-cadherin is required for suppression of ozone-induced IL-17A expression. Similar
results were obtained for pulmonary mRNA expression of saa3, an acute phase protein capable of inducing IL-17A
expression. Comparison of lung histological sections across genotypes also indicated that adiponectin attenuation of
ozone-induced inflammatory lesions at bronchiolar branch points required T-cadherin. BAL neutrophils and G-CSF were
augmented in T-cad2/2 mice and further augmented in Adipo2/2/T-cad2/2 mice. Taken together with previous
observations indicating that augmentation of these moieties in ozone exposed Adipo2/2 mice is partially IL-17A dependent,
the results indicate that effects of T-cadherin deficiency on BAL neutrophils and G-CSF are likely secondary to changes in IL-
17A, but that adiponectin also acts via T-cadherin independent pathways. Our results indicate that T-cadherin is required for
the ability of adiponectin to suppress some but not all aspects of ozone-induced pulmonary inflammation.
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Introduction

Ozone (O3) is an environmental pollutant generated by

chemical reactions of automobile emissions (NO and hydrocar-

bons) with sunlight. O3 acts as oxidizing agent on cell membranes

and on proteins and lipids in the lung and airway lining fluid,

leading to epithelial injury and an inflammatory response that

includes induction of acute phase cytokines and chemokines, and

neutrophil influx [1,2,3].

Adiponectin, an adipose-derived hormone that decreases in

obesity [4], has important anti-inflammatory effects. For example,

adiponectin treatment decreases endotoxin-induced pro-inflam-

matory cytokine expression and augments anti-inflammatory IL-

10 expression in monocytes and macrophages [5,6]. Exogenous

administration of adiponectin also decreases allergic airways

inflammation in mice [7]. In addition, we have previously

reported that compared to wildtype (WT) mice, adiponectin

deficient (Adipo2/2) mice exposed to subacute O3 (0.3 ppm for 24

to 72 h) have increased neutrophilic inflammation, and increased

pulmonary expression of certain cytokines and chemokines,

including IL-17A and G-CSF [8].

Several adiponectin binding proteins have been cloned includ-

ing AdipoR1, AdipoR2, and T-cadherin (T-cad) [9,10], all of

which are expressed in the lungs [11,12]. T-cad (cdh13 or H-

cadherin) is a 95 kd glycoprotein which differs from other

cadherin proteins by lacking both transmembrane and cytoplas-

matic domains. Instead, T-cadherin is anchored, mainly on the

apical surface of cells [13], via a glycosylphosphatidylinositol (GPI)

linkage [14]. Importantly, T-cadherin primarily binds the

hexameric and high molecular weight isoforms of adiponectin

[10]. These are also the isoforms that dominate in the lung lining

fluid [15]. In the heart, T-cadherin appears to mediate the

beneficial effects of adiponectin. Following pressure overload, mice

deficient in Tcadherin (T-cad2/2 mice), exhibit increased cardiac

hypertrophy compared to WT mice [16], similar to Adipo2/2

mice. Similarly, the size of infarctions in hearts of mice subjected

to ischemia-reperfusion is greater in T-cad2/2 than WT mice [16].

Furthermore, the ameliorative effects of adiponectin in these

models are not observed in T-cad2/2 mice [16].

The purpose of this study was to examine the hypothesis that T-

cadherin is required for the anti-inflammatory effects of adipo-

nectin that limit the pulmonary inflammation induced by subacute
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O3. To address this hypothesis, we assessed pulmonary inflam-

mation in T-cad2/2 mice and their WT controls exposed to either

air or O3 (0.3 ppm) for 72 hours. For comparison we also

examined Adipo2/2 mice and their WT controls. T-cadherin

functions not only as an adiponectin binding protein, but also as a

cell-cell adhesion molecule that can impact cell polarization,

migration, adhesion, and survival [14]. Hence, effects of T-

cadherin deficiency on responses to O3 may be the result of the

cell-adhesion rather than the adiponectin-binding properties of T-

cadherin. To address this issue, we also examined mice deficient in

both T-cadherin and adiponectin (Adipo2/2/T-cad2/2 mice). We

reasoned if effects of T-cadherin deficiency were a reflection of

adipnectin binding to T-cadherin, then we would not see any

difference between T-cadherin deficient mice and mice deficient in

both adiponectin and T-cadherin.

Methods

Animals
This study was approved by the Harvard Medical Area

Standing Committee on Animals under protocol number 03078

and carried out in accordance with the recommendations in the

Guide for the Care and Use of Laboratory Animals from the

National Institute of Health. All efforts were made to minimize

suffering. Adipo2/2 and T-cad2/2 mice were obtained from Dr.

Matsuzaka (Osaka, Japan). T-cad2/2 mice [17] and Adipo2/2 were

bred together to obtain Adipo2/2/T-cad2/2 mice as previously

described [18]. Others have reported small but potentially

significant genetic differences in C57BL/6 mice from different

vendors [19]. Differences in the microbiome between C57BL/6

mice from Jackson Laboratories and Taconic Farms have also

been reported [20]. Hence, as controls for the Adipo2/2 mice, we

used C57BL/6 from Jackson Laboratories (WT-jax) because this

was the genetic background for the Adipo2/2 mice. As controls

for the T-cad2/2 and Adipo2/2/T-cad2/2 mice, we used C57BL/6

mice from Taconic Farms (WT-tac) because this was the

background for the T-cad2/2 mice. Note that we generated the

Adipo2/2/T-cad2/2 mice by backcrossing offspring from

Adipo2/26T-cad2/2 matings onto T-cad2/2 mice [18].

Protocol
Age and gender matched Adipo2/2, T-cad2/2, Adipo2/2T-cad2/2,

and control mice were exposed to either air or O3 (0.3 ppm,

72 hours) as previously described [8]. Our experience is that

neutrophil recruitment plateaus after 48 h of exposure, but

significant changes in BAL macrophages do not occur in wildtype

mice until 72 h of exposure [8]. Our previous data also indicate that

statistically significant changes in BAL macrophages do not occur in

wildtype mice until 72 h of exposure [8]. Immediately after the

exposure, mice were euthanized by i.p. overdose of sodium

pentobarbital. Two cohorts of mice were used. In the first, blood

was drawn, the trachea was cannulated to perform bronchoalveolar

lavage (BAL), and lungs were stored at 280uC for extraction of total

RNA. In the second cohort, lungs were fixed for histological

assessment of O3-induced pulmonary lesions [21].

Ozone exposure
Mice were exposed to either O3 (0.3 ppm) or ambient air for

72 hours as previously described [8]. Briefly, cages without the

microisolator cover were placed in a steel and plexiglass chamber,

and supplied with a mixture of O3 and air. O3 was produced by

passing medical grade oxygen through a high voltage ozonizer and

bled into the chamber. O3 concentration in the chamber was

controlled by regulating the amount of ambient air flowing into

the chamber. Mice were supplied with normal chow and water ad

libitum.

Bronchoalveolar lavage and serum
BAL was performed using two instillations of 1 mL of cold PBS.

BAL samples were centrifuged, supernatants were assessed for

inflammatory cytokines, and BAL cells were resuspended and

counted using a hemocytometer. Cytospin was performed for

differential cell analysis. Blood was drawn by cardiac puncture to

obtain serum.

Cytokines and Chemokines
A panel of 32 cytokines, chemokines and growth factors

(eotaxin, G-CSF, GM-CSF, IFNc, IL-1a, IL-1b, IL-2, IL-3, IL-

4, IL-5, IL-6, IL-7, IL-9, IL-10, IL-12p40, IL-12p70, IL-13, IL-15,

IL-17, IP-10, KC, LIF, LIX, MCP-1, M-CSF, MIG, MIP-1a,

MIP-1b, MIP-2, RANTES, TNF-a, and VEGF) were quantified

in BAL by a multiplex assay (Eve Technologies, Alberta, Canada)

as previously described [22] and a commercial ELISA was used for

quantification of sTNFR1 and adiponectin (R&D Systems, MN).

RNA generation and qRT-PCR
Total lung RNA was extracted using the protocol provided in

the RNAeasy kit (Qiagen, MD), and quantified by Nanodrop

(ThermoScientific, NJ). cDNA was synthesized from RNA by

using a commercial kit [8]. Real time PCR (RT-PCR) was used to

assess the mRNA expression of IL-17A, serum amyloid A3 (saa3),

and Ki67 (a marker of cell proliferation), by the SYBR green

method. Primer sequences are provided in Table 1. Gene

expression was normalized to 18S (internal control) followed by

analysis by the DDCT method.

Histology
Mice were euthanized and lungs inflated to 20 cmH2O with 4%

PBS buffered paraformaldehyde (pH = 7.4) overnight. Lungs were

washed with PBS and transferred to 70% ethanol, and dehydrat-

ed. The left lung was sectioned, embedded in paraffin, and stained

with hematoxylin and eosin. The severity of lesions located at

terminal bronchioles was assessed by scoring the number of

cellular layers below the epithelium as follows: 0 for no lesions, 1:

1–2 cellular layers, 2: for 3 cellular layers, 3: for 4 cellular layers,

and 4: for 5 cells or more layers. Total score for each mouse was

computed by averaging the scores of all terminal bronchioles

present on all sections of left lung.

Statistical Analysis
The significance of differences between groups was assessed

using Factorial ANOVA combined with LSD Fisher as post-hoc

analysis (Statistica Software, Statsoft, OK). Data that were not

normally distributed were log transformed before statistical

Table 1. Primers sequence used for qRT-PCR.

Gene Sense Anti-sense

18S 59-GTAACCCGTTGAACCCCATT-39 59-CCATCCAATCGGTAGTAGCG-39

IL-17A 59-CCAGGGAGAGCTTCATCTGT-
39

59-AGGAAGTCCTTGGCCTCAGT-39

ki67 59-AGGGTAACTCGTGGAACCAA-
39

59-GGAGGTGAAAACCACACTGG-
39

saa3 59-CCTGGGCTGCTAAAGTCATC-3959-CACTCATTGGCAAACTGGTC-39

doi:10.1371/journal.pone.0065829.t001

T-Cadherin Deficiency and Responses to Ozone
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analysis. Means and standard errors from log values were

retrocalculated with appropriate error propagations. P,0.05

(two tail) was considered significant. Because the controls for the

Adipo2/2 and the T-cad2/2 and Adipo2/2/T-cad2/2 mice were

different, the data from these mice were analyzed separately. All

values are expressed as mean6standard mean of error.

Results

BAL and serum adiponectin
Serum adiponectin was substantially higher in T-cad2/2 than

WT mice (Fig. 1A), consistent with previous observations

[15,17,18]: adiponectin bound to T-cadherin on the endothelium

serves as a repository for adiponectin that is delivered back to the

circulation in T-cad2/2 mice [16,17,23]. There was no effect of O3

exposure on serum adiponectin (Fig. 1A). In contrast, O3 exposure

caused a marked increase in BAL adiponectin in T-cad2/2 mice

(Fig. 1B), likely as a result of increased transit from the blood into

the lung consequent to O3-induced increases in the permeability of

the alveolar/capillary barrier, as previously discussed [8]. BAL

adiponectin was slightly lower in air exposed T-cad2/2 versus WT

mice and slightly higher in O3 exposed T-cad2/2 versus WT mice

although these changes were not significant (Fig. 1B).

Effect of T-cadherin deficiency on O3-induced pulmonary
inflammation

Compared to air, factorial ANOVA demonstrated that O3

increased BAL neutrophils, macrophages, and protein (Fig. 2),

consistent with previous reports by ourselves and others using this

type of O3 exposure [8,24]. BAL neutrophils and protein were

higher in O3-exposed Adipo2/2 versus WT mice, consistent with

our previous observations [8]. Note that BAL neutrophils are also

significant greater in Adipo2/2 versus WT mice after 24 or 48 h of

exposure [8]. We also observed significantly more BAL neutro-

phils in O3-exposed T-cad2/2 mice versus their corresponding

WT controls. BAL neutrophils were also higher in O3-exposed

Adipo2/2/T-cad2/2 than T-cad2/2 mice. No significant change in

BAL protein was observed in T-cad2/2 mice exposed to O3

compared to WT mice under the same exposure (p = 0.06), despite

a trend towards an increase in T-cad2/2 mice. Interestingly, BAL

protein was significantly greater in O3-exposed Adipo2/2/T-cad2/2

versus WT mice (p = 0.005). There was no significant effect of

genotype on ozone induced changes in BAL macrophages (Fig. 2B).

Note that it is not possible to directly compare Adipo2/2/T-cad2/2

and Adipo2/2 mice due to differences in the background strain (see

methods).

To further evaluate the impact of T-cadherin deficiency on O3

induced inflammation, we performed a multiplex assay of

cytokines and chemokines. Of the factors assayed by multiplex,

factorial ANOVA indicated a significant effect of O3 exposure in

both cohorts of mice (WT/Adipo2/2 and WT/T-cad2/2/Adipo2/2/

Tcad2/2) for G-CSF, IL-5, IL-6, LIF, KC, and eotaxin. BAL IL-6

and G-CSF were significantly higher in Adipo2/2 versus WT mice

exposed to O3 (Fig. 3A, B), consistent with our previous observations

[8]. We also observed significantly higher BAL LIF and IL-5 in O3-

exposed Adipo2/2 versus WT mice (Fig. 3C, D). BAL G-CSF was

also significantly higher in T-cad2/2 versus WT mice exposed to O3,

and higher still in Adipo2/2/T-cad2/2 versus T-cad2/2 mice

(Fig. 3B). Surprisingly, O3-induced changes in BAL IL-5 were

significantly reduced by T-cadherin deficiency, and this change was

reversed by combined adiponectin and T-cadherin deficiency.

Neither BAL IL-6 nor LIF was significantly affected by T-cadherin

deficiency, although there was significantly greater BAL LIF in O3-

exposed Adipo2/2/T-cad2/2 versus WT mice and a similar trend

for IL-6. There was no genotype effect for either eotaxin or KC

(data not shown). IL-17A was below the limit of detection of the

Bioplex assay, but IL-17A mRNA expression was induced by

subacute O3 exposure. O3-induced increases in IL-17A were

significantly greater in Adipo2/2 than WT mice (Fig. 3E), consistent

with our previous observations [8]. O3-induced increases in IL-17A

were also significantly greater in T-cad2/2 versus WT mice, and

there was no further increase in Adipo2/2/T-cad2/2 versus T-cad2/

2 mice.

We also measured BAL concentrations of sTNFR1 (soluble

TNFa receptor 1), the extracellular domain of TNFR1 (Fig. 3F).

sTNFR1 is cleaved from cell surfaces by the enzyme TACE

(TNFa converting enzyme). TACE activity is increased by

conditions associated with oxidative stress [25]. Compared to

air, O3 exposure resulted in a marked increase in BAL sTNFR1 in

all mouse genotypes used in this study (Fig. 3F). BAL sTNFR1 was

Figure 1. Serum and BAL adiponectin. Total adiponectin was measured by ELISA in serum (A) and bronchoalveolar lavage (BAL) fluid (B) of
wildtype (Taconics) and T-cadherin deficient (T-cad2/2) mice exposed to air and ozone (O3, 0.3 ppm) for 72 h. * p,0.05 versus genotype matched air
exposed mice; #p0.05 versus wildtype mice with the same exposure. Results of adiponectin in BAL are expressed as mean 6 SEM of data from 5 mice
exposed to air per group and 7 ozone exposed mice per group. The number of mice used for measurements of serum adiponectin was 4 mice per
group.
doi:10.1371/journal.pone.0065829.g001

T-Cadherin Deficiency and Responses to Ozone
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significantly greater in O3-exposed Adipo2/2 versus WT mice,

consistent with previous observations [8]. There was no significant

difference in BAL sTNFR1 in O3-exposed T-cad2/2 versus WT

mice. However, BAL sTNFR1 was significantly higher in O3-

exposed Adipo2/2/T-cad2/2 mice than in either WT or T-cad2/2

mice. The results are consistent with the hypothesis that

adiponectin deficiency results in increased oxidative stress leading

to greater TACE activation, and that T-cadherin is not involved in

this effect of adiponectin.

Histology
In O3-exposed mice, histopathologic examination revealed

inflammatory lesions localized at bronchiolar branch points.

These lesions were characterized by focal interstitial expansion

by mononuclear cells and reactive hyperplasia of epithelial cells

(see Fig. 4B arrow, and a higher magnification of a different airway

in Fig. 4C). The severity of the lesions varied, and was quantified

as described in Methods. Compared to air, O3 exposure resulted

in a significant increase in terminal bronchiolar lesions (Fig. 4D).

O3-induced lesions were significantly greater in Adipo2/2 versus

WT mice. O3-induced lesions were also significantly greater in T-

cad2/2 versus WT mice, but there was no further augmentation in

Adipo2/2/T-cad2/2 versus T-cad2/2 mice (Fig. 4D).

qRT-PCR
To further evaluate the role of T-cadherin in adiponectin

dependent effects on O3-induced inflammation, we examined the

mRNA expression of Ki67 and saa3. We chose to examine Ki67

because it is a well-established marker of cell proliferation [26].

Others have reported BrdU labeling within the terminal bronchi-

olar epithelium after O3 exposure [27] consistent with epithelial

repair following injury, and the lesions we observed in mice

exposed to O3 included epithelial cell hyperplasia (Fig. 4). We

chose to examine saa3 because others have reported that it is

increased by O3 to a greater extent in lungs of other types of O3-

sensitive versus O3-resistant mice [28,29] qRT-PCR data indicat-

ed a robust induction of Ki67 and saa3 by O3 (Fig. 5). O3-induced

increases in Ki67 were not affected by either adiponectin or T-

cadherin deficiency (Fig. 5A). O3-induced expression of saa3 was

higher in Adipo2/2 versus WT mice (Fig. 5B). O3-induced

expression of saa3 was also significantly greater in T-cad2/2 than

WT mice, and there was no further increase in Adipo2/2/T-cad2/2

versus T-cad2/2 mice.

Discussion

Adiponectin deficiency augments the pulmonary inflammation

induced by subacute O3 exposure in mice [8], indicating an anti-

inflammatory role for adiponectin. Results from the current study

show that T-cadherin, an adiponectin binding protein, is required

for aspects of this anti-inflammatory effect of adiponectin.

We have previously reported that BAL concentrations of

adiponectin increase following subacute O3 exposure and that

O3-induced neutrophilic influx into the lungs is augmented in mice

deficient in adiponectin [8]. These results indicate an anti-

inflammatory role for adiponectin during subacute ozone expo-

sure. We have also demonstrated that the augmented neutrophilia

observed in Adipo2/2 mice is the result of increased IL-17A

expression and consequent G-CSF production [8]. The goal of this

study was to determine whether T-cadherin, an adiponectin

binding protein, contributes to these anti-inflammatory effects of

adiponectin. Although several other adiponectin binding proteins

have been described [9,30], we chose to examine T-cadherin

because we have shown, using CHO cells overexpressing T-

cadherin, that T-cadherin primarily binds the hexameric and high

molecular weight (HMW) isoforms of adiponectin [10], the

isoforms most abundant in the lung lining fluid [15]. T-cadherin

has also been shown to bind adiponectin in vivo: T-cadherin is

prominently expressed on the apical surface of endothelial cells

and immunohistochemistry indicates strong binding of adiponec-

tin to these cells in wildtype mice. In contrast, this binding is lost in

T-cad2/2 mice [17]. In addition, T-cadherin is required for the

protective effects of adiponectin against cardiac hypertrophy

induced by pressure overload and against cardiac injury induced

by ischemia-reperfusion [31]. Our results indicate that T-cadherin

deficiency mimics aspects of the effects of adiponectin deficiency.

After subacute O3, T-cad2/2 mice, like Adipo2/2 mice, had

Figure 2. Lung inflammation and injury. BAL neutrophils (A),
macrophages (B) and protein (C) in mice exposed to room air or O3

(0.3 ppm) for 72 hours. *p,0.05 versus air exposed mice of the same
genotype, #p,0.05 versus wildtype mice with the same exposure, +
p,0.05 versus T-cadherin deficient mice with the same exposure.
Results are mean 6 SEM of data from 4–7 air exposed mice and 6–10
ozone exposed mice.
doi:10.1371/journal.pone.0065829.g002

T-Cadherin Deficiency and Responses to Ozone
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increased BAL neutrophils and G-CSF, increased pulmonary IL-

17A mRNA expression, as well as increased terminal bronchiolar

lesions compared to wildtype mice (Fig. 2A,3B,3E, and 4D),

suggesting that binding to T-cadherin is required for effects of

adiponectin on these outcomes. In contrast, O3-induced increases

in BAL protein, a marker of lung injury, O3-induced increases in

sTNFR1, a marker of oxidative stress, and O3-induced increases in

BAL IL-6 and LIF were augmented in Adipo2/2 versus wildtype

mice, but not in T-cad2/2 versus wildtype mice (Figs. 2,3). IL-6 is

required for recruitment of neutrophils after subacute ozone

[2,32]. The role of LIF has not been established, but may be

similar to IL-6 since it is a member of the same family of cytokines

and shares signal transduction pathways with IL-6 [33]. The

results indicate that adiponectin-dependent changes in sTNF1, IL-

6, and LIF involve adiponectin acting through other adiponectin

binding proteins such as AdipoR1, AdipoR2, and calreticulin

[9,30], or through non receptor mediated effects of adiponectin

[34].

In addition to its role as an adiponectin binding protein, T-

cadherin has other functions. It acts as a binding protein for

lipoproteins [10,35,36,37] and also plays an important role in

neuron growth [38] and in polarization and migration of

endothelial cells [14]. T-cadherin also reduces surfactant protein

D secretion in a pulmonary epithelial cell line [11]. It is possible

that loss of such functions, rather than loss of the ability of T-

cadherin to bind adiponectin, accounts for the observed effects of

T-cadherin deficiency in O3 exposed mice. To test this hypothesis,

we also examined Adipo2/2/T-cad2/2 mice. Although we did not

Figure 3. Cytokine and chemokine expression. BAL IL-6 (A), G-CSF (B), LIF (C), IL-5 (D), pulmonary IL-17A mRNA expression (E), and soluble
TNFR1 (sTNFR1) (F) in mice exposed to room air or O3 (0.3 ppm) for 72 hours. *p,0.05 versus air exposed mice of the same genotype, #p,0.05
versus wildtype mice with the same exposure, + p,0.05 versus T-cadherin deficient mice with the same exposure. Results are mean 6 SEM of data
from 3–5 air exposed mice and 3–7 ozone exposed mice for IL-6, G-CSF, LIF, and IL-5; 4–9 air exposed and 4–9 for ozone exposed mice for IL-17A
mRNA; and 4–7 air exposed and 6–10 ozone exposed mice for sTNFR1;.
doi:10.1371/journal.pone.0065829.g003

T-Cadherin Deficiency and Responses to Ozone
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assess adiponectin binding to T-cadherin in this study, our results

suggest that adiponectin binding to T-cadherin is required for the

ability of adiponectin to inhibit O3-induced IL-17A and saa3

expression, as well as the development of terminal bronchiolar

lesions. O3-induced IL-17A mRNA expression, terminal bronchi-

olar lesions, and saa3 expression, were augmented in T-cad2/2

mice, but no further augmentation was observed in mice with

combined adiponectin and T-cadherin deficiency mice

Figure 4. Terminal bronchiolar lesions. H&E stained histological sections of lungs of wildtype mice exposed to air (A) or ozone (B) showing
bronchiolar/central acinar lesions in ozone exposed mice (magnification 1006). Arrow in red is pointing a terminal bronchiole with lesion. (C) A detail
of these lesions in an ozone exposed mouse (magnification 4006). (D) An average lesion score was calculated for each mouse as described in
Methods and these were averaged across mice from each genotype. * p,0.05 versus air exposed mice of the same genotype, # p,0.05 versus
wildtype mice with the same exposure. Results are mean 6 SEM of data from 6–12 air exposed mice and 8–16 ozone exposed mice.
doi:10.1371/journal.pone.0065829.g004

Figure 5. Real time PCR. Pulmonary mRNA expression of ki67 (A) and saa3 (B) in lungs of mice exposed to room air or O3 (0.3 ppm ) for 72 h.
Expression was normalized to 18 s and expressed relative to wildtype mice exposed to O3. *p,0.05 versus air exposed mice of the same genotype,
#p,0.05 versus wildtype mice with the same exposure. Results are mean 6 SEM of data from 4–7 air exposed mice and 6–10 ozone exposed mice.
doi:10.1371/journal.pone.0065829.g005
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(Fig. 3E,4D,5B), indicating that the presence of T-cadherin was

necessary for the ability of adiponectin to inhibit these outcomes.

In contrast, compared to mice deficient in T-cadherin alone,

combined adiponectin and T-cadherin deficiency further aug-

mented BAL neutrophils and G-CSF (Figs. 2A, 3B). Augmented

ozone-induced increases in BAL neutrophils and G-CSF are

partially dependent on IL-17A [8]. Taken together with the

observation that the increased IL-17A expression in Adipo2/2 mice

requires T-cadherin (Fig. 3E), the results are consistent with the

hypothesis that the augmented O3-induced increases in BAL

neutrophils and G-CSF in T-cad2/2 versus wildtype mice derive

from increases in IL-17A, whereas the additional effects of

combined adiponectin and T-cadherin deficiency are the result

of adiponectin acting through non-IL-17A dependent pathways

(Figure 6).

In contrast to the increased inflammatory responses observed in

T-cad2/2 versus wildtype mice after subacute O3 exposure

reported here, we have previously reported reduced airway

inflammation in T-cad2/2 versus wildtype mice after allergen

sensitization and challenge [18]. In that study, we concluded that

T-cadherin does not mediate the effects of adiponectin. Instead,

we suggested that the effects of T-cadherin deficiency may result

from augmented circulating adiponectin in T-cad2/2 mice

(Fig. 1A) acting on other adiponectin binding proteins on

circulating or lymphoid tissue Th2 lymphocytes, a key effector

cell for allergic airway responses. As discussed above, T-cadherin is

highly expressed in endothelial cells [14], where it appears to act as

a repository for adiponectin. In the absence of T-cadherin, this

adiponectin is delivered back to the blood resulting in increased

circulating concentrations [15,16,17,18,23], as observed (Fig. 1A).

One explanation for the divergent effects of T-cadherin deficiency

in that study [18] versus this one is as follows. As discussed above,

T-cadherin does appear to at least partially mediate the effects of

adiponectin that reduce inflammation induced by subacute O3. In

contrast, other adiponectin binding proteins appear to mediate the

anti-inflammatory effects of adiponectin after allergen challenge

[18]. The difference in adiponectin binding proteins employed by

adiponectin in the two models is likely related to the cell types

involved in the two different types of pulmonary inflammation.

Whereas CD4+ lymphocytes are critical for allergic airways

inflammation, the response to subacute O3 mainly involves the

innate immune response, particularly epithelial cells, macrophag-

es, and pulmonary cd T-cells [8].

In wildtype mice, we observed an increase in BAL concentra-

tions of the Th2 cytokine, IL-5 after subacute O3 exposure

(Fig. 3D). Others have also reported an increase in BAL IL-5 after

O3 exposure in mice, albeit using a different ozone exposure

protocol [39]. The role of IL-5 in mediating responses to O3 has

not been established. In contrast to the effects of T-cadherin

deficiency on other O3-induced changes in the lung, BAL IL-5 was

reduced in T-cadherin deficient mice and restored in adiponectin/

T-cadherin bideficient mice. This response is similar to the effects

of T-cadherin deficiency on Th2 cytokines in allergen sensitized

and challenged mice described above [18], suggesting that the

source of IL-5 after O3 may be Th2 cells.

Despite the increased circulating concentrations of adiponectin

in T-cad2/2 mice (Fig. 1A), we and others [15,23] have reported

reduced BAL adiponectin in naı̈ve T-cad2/2 versus wildtype mice,

similar to the results of this study (Fig. 1B, air exposed mice). Such

observations indicate that in unchallenged mice, adiponectin is not

transported into the lung via simple diffusion: if accumulation of

BAL adiponectin relied solely on diffusion, it would be greater in

T-cad2/2 versus WT mice, since these mice have greater serum

adiponectin (Fig. 1A). Instead, we suggested that T-cadherin may

serve to transport adiponectin across the alveolar capillary barrier

[15]. Such a hypothesis is consistent with the observation that

HMW adiponectin, the adiponectin isoform most readily bound to

T-cadherin [10], is also the major isoform present in BAL fluid of

naı̈ve mice, whereas the trimeric isoform, which should diffuse

most easily, is barely detectable [15,23]. Loss of such a transport

function for T-cadherin is unlikely to explain the effects of T-cad2/

2 observed in this study since BAL concentrations of adiponectin

were actually greater in O3 exposed T-cad2/2 versus wildtype

mice (Fig. 1B). Subacute O3 exposure results in a marked increase

in the permeability of the lungs (Fig. 2C), consistent with lung

injury. Based on previous observations indicating that trimeric

adiponectin accounted for the majority of the increased BAL

adiponectin after ozone [8], we reasoned that in the setting of

increased lung permeability, diffusion rather than T-cadherin-

mediated transport begins to dominate movement of adiponectin

from the blood into the lungs.

Others have demonstrated epithelial injury in mice exposed to

O3 in this manner, especially in the terminal bronchioles and

central acinus, as evidenced by increased BrdU incorporation into

these cells, likely reflecting cell proliferation after injury [27,40,41].

Consistent with these observations, RT-PCR confirmed increased

O3-induced expression of one of these genes, Ki67 (Fig. 5A), a

common marker of cell proliferation [26]. However, neither

adiponectin deficiency nor T-cadherin deficiency had any effect

on Ki67 mRNA expression (Fig. 5A), suggesting that adiponectin

does not regulate cell proliferation in this model. In contrast, we

observed effects of both adiponectin deficiency and T-cadherin

deficiency on the extent of terminal bronchiolar lesions observed

after subacute O3 (Fig. 4). Furthermore, adiponectin/T-cadherin

bideficiency did not further augment the effects of T-cadherin

deficiency on these lesions (Fig. 4), indicating that the effects of T-

cadherin deficiency were the result of loss of adiponectin binding

to this receptor. Taken together, the results suggest that the impact

of adiponectin on terminal bronchiolar lesions is the result of more

inflammatory cell recruitment to these sites of injury rather than

more epithelial proliferation.

Saa3 is an acute phase protein capable of recruiting monocytes

and macrophages to sites of inflammation, perhaps by forming a

complex with the extracellular matrix protein, hyaluronan [42].

O3-induced increases in saa3 mRNA expression were substantially

(almost 6 fold) greater in Adipo2/2 versus WT mice (Fig. 5B). T-

cadherin deficiency also resulted in a marked increase in saa3

expression in O3-exposed mice, and no further augmentation was

observed in mice with combined adiponectin and T-cadherin

deficiency (Fig. 5B), indicating that the presence of T-cadherin was

necessary for adiponectin to suppress saa3 mRNA expression,

similar to our observations with IL-17A (Fig. 3E). We have

previously reported that interstitial macrophages and cd T cells

Figure 6. Schematic representation of T-cadherin dependent
and independent effects of adiponectin that act to inhibit
ozone induced neutrophil influx into the lungs.
doi:10.1371/journal.pone.0065829.g006
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are the source of the augmented IL-17A produced in the lungs

following subacute O3 exposure in Adipo2/2 mice [8]. Saa3 has the

capacity to induce IL-17A expression in T cells [43] and it is

possible that it also regulates IL-17A expression in lung after

subacute O3 exposure.

One technical issue requires discussion. We exposed mice to O3

for 72 hours. Others have shown gene specific differences in the

kinetics of gene expression following O3 [28,29]. Hence, it is likely

that cytokines and chemokines other than those we identified in

Fig. 3 as being impacted by O3 were induced at earlier times in the

exposure and then declined. Moreover, it is possible that the

earlier expression of these moieties contributes to responses

observed after 72 h exposure. However, we have examined the

time course of key outcomes described here that differ in WT

versus Adipo2/2 mice (BAL neutrophils, IL-17 mRNA expres-

sion) and have found that these genotype-related differences exist

throughout the 72 h exposure period described here[8].

In summary, our results confirm an anti-inflammatory role for

adiponectin in pulmonary responses to subacute O3 and indicate

that adiponectin binding to T-cadherin is required for aspects of

this response, including the induction of IL-17A and consequent

recruitment of neutrophils to the lungs.
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