136 research outputs found

    A two-stage meta-analysis identifies several new loci for Parkinson's Disease

    Get PDF
    A previous genome-wide association (GWA) meta-analysis of 12,386 PD cases and 21,026 controls conducted by the International Parkinson's Disease Genomics Consortium (IPDGC) discovered or confirmed 11 Parkinson's disease (PD) loci. This first analysis of the two-stage IPDGC study focused on the set of loci that passed genome-wide significance in the first stage GWA scan. However, the second stage genotyping array, the ImmunoChip, included a larger set of 1,920 SNPs selected on the basis of the GWA analysis. Here, we analyzed this set of 1,920 SNPs, and we identified five additional PD risk loci (combined p<5×10−10, PARK16/1q32, STX1B/16p11, FGF20/8p22, STBD1/4q21, and GPNMB/7p15). Two of these five loci have been suggested by previous association studies (PARK16/1q32, FGF20/8p22), and this study provides further support for these findings. Using a dataset of post-mortem brain samples assayed for gene expression (n = 399) and methylation (n = 292), we identified methylation and expression changes associated with PD risk variants in PARK16/1q32, GPNMB/7p15, and STX1B/16p11 loci, hence suggesting potential molecular mechanisms and candidate genes at these risk loci

    Equating scores of the University of Pennsylvania smell identification test and sniffin' sticks test in patients with Parkinson's disease

    Get PDF
    Background Impaired olfaction is an important feature in Parkinson's disease (PD) and other neurological diseases. A variety of smell identification tests exist such as “Sniffin’ Sticks” and the University of Pennsylvania Smell Identification Test (UPSIT). An important part of research is being able to replicate findings or combining studies in a meta-analysis. This is difficult if olfaction has been measured using different metrics. We present conversion methods between the: UPSIT, Sniffin’ 16, and Brief-SIT (B-SIT); and Sniffin’ 12 and Sniffin’ 16 odour identification tests. Methods We used two incident cohorts of patients with PD who were tested with either the Sniffin’ 16 (n = 1131) or UPSIT (n = 980) and a validation dataset of 128 individuals who took both tests. We used the equipercentile and Item Response Theory (IRT) methods to equate the olfaction scales. Results The equipercentile conversion suggested some bias between UPSIT and Sniffin’ 16 tests across the two groups. The IRT method shows very good characteristics between the true and converted Sniffin’ 16 (delta mean = 0.14, median = 0) based on UPSIT. The equipercentile conversion between the Sniffin’ 12 and 16 item worked well (delta mean = 0.01, median = 0). The UPSIT to B-SIT conversion showed evidence of bias but amongst PD cases worked well (mean delta = −0.08, median = 0). Conclusion We have demonstrated that one can convert UPSIT to B-SIT or Sniffin’ 16, and Sniffin’ 12 to 16 scores in a valid way. This can facilitate direct comparison between tests aiding future collaborative analyses and evidence synthesis

    The Val158Met COMT polymorphism is a modifier of the age at onset in Parkinson's disease with a sexual dimorphism

    Get PDF
    The catechol-O-methyltranferase (COMT) is one of the main enzymes that metabolise dopamine in the brain. The Val158Met polymorphism in the COMT gene (rs4680) causes a trimodal distribution of high (Val/Val), intermediate (Val/Met) and low (Met/Met) enzyme activity. We tested whether the Val158Met polymorphism is a modifier of the age at onset (AAO) in Parkinson's disease (PD). The rs4680 was genotyped in a total of 16 609 subjects from five independent cohorts of European and North American origin (5886 patients with PD and 10 723 healthy controls). The multivariate analysis for comparing PD and control groups was based on a stepwise logistic regression, with gender, age and cohort origin included in the initial model. The multivariate analysis of the AAO was a mixed linear model, with COMT genotype and gender considered as fixed effects and cohort and cohort-gender interaction as random effects. COMT genotype was coded as a quantitative variable, assuming a codominant genetic effect. The distribution of the COMT polymorphism was not significantly different in patients and controls (p=0.22). The Val allele had a significant effect on the AAO with a younger AAO in patients with the Val/Val (57.1±13.9, p=0.03) than the Val/Met (57.4±13.9) and the Met/Met genotypes (58.3±13.5). The difference was greater in men (1.9 years between Val/Val and Met/Met, p=0.007) than in women (0.2 years, p=0.81). Thus, the Val158Met COMT polymorphism is not associated with PD in the Caucasian population but acts as a modifier of the AAO in PD with a sexual dimorphism: the Val allele is associated with a younger AAO in men with idiopathic PD

    Molecular mechanisms in 22q11 deletion syndrome

    No full text
    It is now well recognized that as well as having a characteristic facial dysmorphology and a range of congenital abnormalities, individuals with chromosome 22q11 deletion syndrome (22q11DS) have a greatly increased risk of developing psychosis, in particular schizophrenia. The majority of deletions span a large 3Mb region at 22q11. However, the presence of affected individuals carrying smaller deletions have not been sufficient to satisfactorily reduce the critical region for the behavioral phenotype beyond a ~1.5Mb region that contains at least 28 genes. By having a shared genetic variant that greatly increases risk to psychosis, individuals with 22q11DS are a relatively homogeneous population to study psychiatric disease. Despite this, the large volume of research performed over the last 15 years suggest that the mechanism by which haploinsufficiency at 22q11 increases risk to psychiatric illness is likely to be complex and it remains uncertain why individuals carrying identical 22q11 deletions can present with such a wide range of neuropsychiatric phenotypes. This review will therefore consider the ways in which deletions at 22q11 are expected to increase risk to develop psychiatric disease by summarizing the work that has been done to investigate three of the most likely disease causing mechanisms: (a) gene dosage sensitivity; (b) unmasking of recessive alleles or functional polymorphism; and (c) position effect

    Genetic abnormalities of chromosome 22 and the development of psychosis

    No full text
    A microdeletion at chromosome 22q11 is the most frequently known interstitial deletion found in humans, occurring in approximately one of every 4000 live births. Its occurrence is associated with a characteristic facial dysmorphology, a range of congenital abnormalities, and psychiatric problems, especially schizophrenia. The prevalence of psychosis in those with 22q11 deletion syndrome is high (30%), suggesting that haploinsufficiency of a gene or genes in this region may confer a substantially increased risk. In addition, several studies provide evidence for linkage to schizophrenia on 22q, suggesting that a gene in this region could confer susceptibility to schizophrenia in nondeleted cases. Recent studies have provided compelling evidence that haploinsufficiency of TBX1 is likely to be responsible for many of the physical features associated with the deletion. However, although a number of genes have been implicated as possible schizophrenia susceptibility loci, further confirmatory studies are required
    • 

    corecore