3,323 research outputs found

    Female orgasmic disorder

    Get PDF
    This issue of eMedRef provides information to clinicians on the pathophysiology, diagnosis, and therapeutics of female orgasmic disorder

    Decoherence-Free Subspaces for Multiple-Qubit Errors: (II) Universal, Fault-Tolerant Quantum Computation

    Get PDF
    Decoherence-free subspaces (DFSs) shield quantum information from errors induced by the interaction with an uncontrollable environment. Here we study a model of correlated errors forming an Abelian subgroup (stabilizer) of the Pauli group (the group of tensor products of Pauli matrices). Unlike previous studies of DFSs, this type of errors does not involve any spatial symmetry assumptions on the system-environment interaction. We solve the problem of universal, fault-tolerant quantum computation on the associated class of DFSs.Comment: 22 pages, 4 figures. Sequel to quant-ph/990806

    Diet breadth, coexistence and rarity in bumblebees

    Get PDF
    Factors that determine the relative abundance of bumblebee species remain poorly understood, rendering management of rare and declining species difficult. Studies of bumblebee communities in the Americas suggest that there are strong competitive interactions between species with similar length tongues, and that this competition determines the relative abundance of species. In contrast, in Europe it is common to observe several short-tongued species coexisting with little or no evidence for competition shaping community structure. In this study we examine patterns of abundance and distribution in one of the most diverse bumblebee communities in Europe, found in the mountains of southern Poland. We quantify forage use when collecting nectar and pollen for 23 bumblebee species, and examine patterns of co-occurrence and niche overlap to determine whether there is evidence for inter-specific competition. We also test whether rarity can be explained by diet breadth. Up to 16 species were found coexisting within single sites, with species richness peaking in mountain pasture at ~1000m altitude. Results concur with previous studies indicating that the majority of pollen collected by bumblebees is from Fabaceae, but that some bee species (e.g. B. ruderatus) are much more heavily dependent on Fabaceae than others (e.g. B. lucorum). Those species that forage primarily on Fabaceae tended to have long tongues. In common with studies in the UK, diet breadth was correlated with abundance: rarer species tended to visit fewer flower species, after correcting for differences in sample size. No evidence was found for similarity in tongue length or dietary overlap influencing the likelihood of co-occurrence of species. However, the most abundant species (which co-occurred at most sites) occupied distinct dietary niche space. While species with tongues of similar length tended, overall, to have higher dietary niche overlap, among the group of abundant short-tongued species that commonly co-occurred there was marked dietary differentiation which may explain their coexistence

    Decoherence-Free Subspaces for Multiple-Qubit Errors: (I) Characterization

    Full text link
    Coherence in an open quantum system is degraded through its interaction with a bath. This decoherence can be avoided by restricting the dynamics of the system to special decoherence-free subspaces. These subspaces are usually constructed under the assumption of spatially symmetric system-bath coupling. Here we show that decoherence-free subspaces may appear without spatial symmetry. Instead, we consider a model of system-bath interactions in which to first order only multiple-qubit coupling to the bath is present, with single-qubit system-bath coupling absent. We derive necessary and sufficient conditions for the appearance of decoherence-free states in this model, and give a number of examples. In a sequel paper we show how to perform universal and fault tolerant quantum computation on the decoherence-free subspaces considered in this paper.Comment: 18 pages, no figures. Major changes. Section on universal fault tolerant computation removed. This section contained a crucial error. A new paper [quant-ph/0007013] presents the correct analysi

    Identification of Melatonin-Regulated Genes in the Ovine Pituitary Pars Tuberalis, a Target Site for Seasonal Hormone Control

    Get PDF
    The pars tuberalis (PT) of the pituitary gland expresses a high density of melatonin (MEL) receptors and is believed to regulate seasonal physiology by decoding changes in nocturnal melatonin secretion. Circadian clock genes are known to be expressed in the PT in response to the decline (Per1) and onset (Cry1) of MEL secretion, but to date little is known of other molecular changes in this key MEL target site. To identify transcriptional pathways that may be involved in the diurnal and photoperiod-transduction mechanism, we performed a whole genome transcriptome analysis using PT RNA isolated from sheep culled at three time points over the 24-h cycle under either long or short photoperiods. Our results reveal 153 transcripts where expression differs between photoperiods at the light-dark transition and 54 transcripts where expression level was more globally altered by photoperiod (all time points combined). Cry1 induction at night was associated with up-regulation of genes coding for NeuroD1 (neurogenic differentiation factor 1), Pbef / Nampt (nicotinamide phosphoribosyltransferase) , Hif1α (hypoxia-inducible factor-1α), and Kcnq5 (K channel) and down-regulation of Rorβ, a key clock gene regulator. Using in situ hybridization, we confirmed day-night differences in expression for Pbef / Nampt, NeuroD1, and Rorβ in the PT. Treatment of sheep with MEL increased PT expression for Cry1, Pbef / Nampt, NeuroD1, and Hif1α, but not Kcnq5. Our data thus reveal a cluster of Cry1-associated genes that are acutely responsive to MEL and novel transcriptional pathways involved in MEL action in the PT

    Reversibly tuning the viscosity of peptide-based solutions using visible light

    Get PDF
    Light can be used to design stimuli–responsive systems. We induce transient changes in the assembly of a low molecular weight gelator solution using a merocyanine photoacid. Through our approach, reversible viscosity changes can be achieved via irradiation, delivering systems where flow can be controlled non-invasively on demand
    corecore