1,412 research outputs found
Recommended from our members
Creating Complex Hollow Metal Geometries using Additive Manufacturing and Electroforming
Additive manufacturing introduces a new design paradigm that allows the fabrication of
geometrically complex parts that cannot be produced by traditional manufacturing and assembly
methods. In this paper, the authors investigate the combination of laser sintering with an
electroforming process using electroless nickel plating to produce complex, thin-walled, hollow,
metal geometries. The resulting geometries cannot be produced directly with other additive
manufacturing systems. The resulting process is used to produce a cellular nickel structure
featuring 800µm walls that is 65 vol% air from a polyamide substrate with 3mm pores.Mechanical Engineerin
Habitat fragmentation and species diversity in competitive communities
Habitat loss is one of the key drivers of the ongoing decline of biodiversity. However, ecologists still argue about how fragmentation of habitat (independent of habitat loss) affects species richness. The recently proposed habitat amount hypothesis posits that species richness only depends on the total amount of habitat in a local landscape. In contrast, empirical studies report contrasting patterns: some find positive and others negative effects of fragmentation per se on species richness. To explain this apparent disparity, we devise a stochastic, spatially explicit model of competitive species communities in heterogeneous habitats. The model shows that habitat loss and fragmentation have complex effects on species diversity in competitive communities. When the total amount of habitat is large, fragmentation per se tends to increase species diversity, but if the total amount of habitat is small, the situation is reversed: fragmentation per se decreases species diversity.Peer reviewe
Recommended from our members
An Investigation of the Effects of Quantum Dot Nanoparticles on Photopolymer Resin for Use in PolyJet Direct 3D Printing
The addition of quantum dot (QD) nanoparticles to additive manufacturing (AM) media
provides the opportunity to create artifacts with complex geometry that also have unique optical
characteristics. However, the addition of nanoparticles can significantly alter the rheology of a
material and make it difficult to process in an AM context. In this study, quantum dots were
added to a photopolymer resin in varying mass ratios to photopolymer, and their effects on the
viscosity, surface tension, and jetting ability of the suspension were investigated. Results show
that printability was not significantly affected by the presence of quantum dots in mass
concentrations less than or equal to 0.5%. The nanosuspensions were deposited via inkjet to
demonstrate the feasibility of creating optically-unique artifacts.Mechanical Engineerin
Recommended from our members
Colour constancy: human mechanisms and machine algorithms
This thesis describes a quantitative experimental investigation into instantaneous colour constancy in humans. Colour constancy may be defined as the ability of the visual system to maintain a constant colour percept of a surface despite varying conditions of illumination. Instantaneous, in this context, refers to effects which happen very rapidly with the change of illumination, rather than those which may be due to long term adaptation of the photoreceptors. The results of experiments are discussed in the context of current computational models of colour constancy. Experiments on subjects with damage to the cerebral cortex are described. These highlight the different uses of chromatic signals within the cerebral cortex and provide evidence for location of the neural substrates which mediate instantaneous colour constancy. The introductory chapter describes briefly the visual system, in the first section, with particular reference to the processing of colour. The second section discusses the psychophysics of human colour vision and the third presents a summary of computational models of colour constancy described in the literature. Chapter two describes the dynamic colour matching technique developed for this investigation. This technique has the advantage of quantifying the level of constancy achieved, whilst maintaining a constant state of adaptation. The C index is defined as a measure of constancy, with 0 representing no constancy and 1 perfect constancy. Calibration procedures for the computer monitor and the necessary transformations to accurately simulate illuminant reflectance combinations are also described. Light scattered within the eye and its effect on colour constancy are discussed. Chapter three is concerned with the effects of altering the illuminant conditions on instantaneous colour constancy. The size of the illuminant shift is varied. Artificial illuminants are compared with those of the Plankian locus. The effects of overall illuminance and the luminance contrast between target and surround are investigated. Chapter four considers the spatial structure of the visual scene. Simple uniform surrounds are compared with those which have a more complex spatiochromatic structure (Mondrians). The effects of varying the test target size and shape are investigated. The decrease in constancy as a black border is placed between test target and surround is measured. Chapter five describes experiments on four subjects with damage to the cerebral cortex. Chromatic discrimination thresholds are investigated for three subjects with achromatopsia as are the contribution of both sighted and blind hemifields to constancy for a subject with hemianopia. Contrary to the predictions of many of the current computational models, using unnatural illuminants has no substantial effect on the C index, nor does the size of the illuminant shift or the luminance contrast between experimental target and surround. The complexity of the surrounding field does not effect constancy. These findings are similar to those from chromatic induction experiments reported in the literature. However, the effect of a black annulus is found to have different spatial parameters that those reported from experiments on chromatic induction, suggesting that a different mechanism may be involved. The three achromatopsics can be shown to exhibit instantaneous colour constancy. However the blind hemifield of the hemianope does not contribute. This suggests that the fusiform gyrus is not the human homologue of V4 and that the primary visual cortex is necessary for instantaneous colour constancy
Recommended from our members
Cyber-Physical Vulnerabilities in Additive Manufacturing Systems
One of the key advantages of additive manufacturing (AM) is its digital thread, which allows
for rapid communication, iteration, and sharing of a design model and its corresponding physical
representation. While this enables a more efficient design process, it also presents opportunities
for cyber-attacks to impact the physical word. In this paper the authors examine potential attack
vectors along the Additive Manufacturing process chain. Specifically, the effects of cyber-physical attacks, and potential means for detecting them, are explored. Based on the results of
this study, recommendations are presented for preventing and detecting cyber-physical attacks on
AM processes.Mechanical Engineerin
Intramammary immunization of pregnant mice with staphylococcal protein a reduces the post-challenge mammary gland bacterial load but not pathology
Protein A, encoded by the spa gene, is one of the major immune evading MSCRAMM of S. aureus, demonstrated to be prevalent in a significant percentage of clinical bovine mastitis isolates in Australia. Given its' reported significance in biofilm formation and the superior performance of S. aureus biofilm versus planktonic vaccine in the mouse mastitis model, it was of interest to determine the immunogenicity and protective potential of Protein A as a potential vaccine candidate against bovine mastitis using the mouse mastitis model. Pregnant Balb/c mice were immunised with Protein A emulsified in an alum-based adjuvant by subcutaneous (s/c) or intramammary (i/mam) routes. While humoral immune response of mice post-immunization were determined using indirect ELISA, cell-mediated immune response was assessed by estimation of interferon-gamma (IFN-γ) produced by protein A-stimulated splenocyte supernatants. Protective potential of Protein A against experimental mastitis was determined by challenge of immunized versus sham-vaccinated mice by i/mam route, based upon manifestation of clinical symptoms, total bacterial load and histopathological damage to mammary glands. Significantly (p<0.05) higher levels of IgG1 isotype were produced in mice immunized by the s/c route. In contrast, significantly higher levels of the antibody isotype IgG2a were produced in mice immunized by the i/mam route (p<0.05). There was significant reduction (p<0.05) in bacterial loads of the mammary glands of mice immunized by Protein A regardless of the route of immunization, with medium level of clinical symptoms observed up to day 3 post-challenge. However, Protein A vaccine failed to protect immunized mice post-challenge with biofilm producing encapsulated S. aureus via i/mam route, regardless of the route of immunization, as measured by the level of mammary tissue damage. It was concluded that, Protein A in its' native state was apparently not a suitable candidate for inclusion in a cell-free vaccine formulation against mastitis
Insights into the mechanical properties of several triply periodic minimal surface lattice structures made by polymer additive manufacturing
Three-dimensional lattices have applications across a range of fields including structural lightweighting, impact absorption and biomedicine. In this work, lattices based on triply periodic minimal surfaces were produced by polymer additive manufacturing and examined with a combination of experimental and computational methods. This investigation elucidates their deformation mechanisms and provides numerical parameters crucial in establishing relationships between their geometries and mechanical performance. Three types of lattice were examined, with one, known as the primitive lattice, being found to have a relative elastic modulus over twice as large as those of the other two. The deformation process of the primitive lattice was also considerably different from those of the other two, exhibiting strut stretching and buckling, while the gyroid and diamond lattices deformed in a bending dominated manner. Finite element predictions of the stress distributions in the lattices under compressive loading agreed with experimental observations. These results can be used to create better informed lattice designs for a range of mechanical and biomedical applications
Morphometric and physical characteristics distinguishing adult Patagonian lamprey, Geotria macrostoma from the pouched lamprey, Geotria australis
The pouched lamprey, Geotria australis Gray, 1851, has long been considered monotypic in the Geotriidae family with a wide southern temperate distribution across Australasia and South America. Recent studies have provided molecular and morphological evidence for a second Geotria species in South America; Geotria macrostoma (Burmeister, 1868). The aim of this study was to determine morphometric and physical characteristics of adult G. macrostoma that further differentiate this re-instated species of Geotriidae from G. australis. The diagnostic features discriminating immature adult G. macrostoma from G. australis when entering fresh water, are distinct differences in dentition, oral papillae and fimbriae counts and differences in coloration. In addition, G. macrostoma display greater growth of the prebranchial region and oral disc and has a deeper body depth and higher condition factor. All current ecological knowledge of the genus Geotria is based on Australasian populations, which may not be applicable to G. macrostoma. To ensure the conservation and protection of the Patagonian lamprey as a re-identified species, further investigations are needed to understand its life history, biology and ecology throughout its range
- …