162 research outputs found

    Victory and Defeat in a Model of Behavior in Games and Toward Risk

    Get PDF
    The standard expected utility model is augmented by allowing individuals to receive additional utility in states in which they consider themselves victorious and to lose a utility increment in which they consider themselves defeated. The resulting event-dependent expected utility model is used to explain behavior in games and toward risk. In games, players consider themselves defeated when their monetary payoffs are low compared to their opponents' payoffs, and they consider themselves victorious when their payoffs are high, but not too high, compared to their opponents' payoffs. Under these conditions the model can accommodate behavior that has been interpreted elsewhere as inequity aversion, as well as cooperation in the prisoner's dilemma and in public good provision games. In situations of risk, individuals consider themselves victorious (defeated) when they receive an unlikely, avoidable, high (low) outcome. Under these conditions the model can accommodate such behavior as the Allais paradox, boundary effects, and simultaneous gambling and insurance. Consequently, the model uses a single framework to discuss evidence from two distinct branches of the literature.

    An Expected Utility-User's Guide to Nonexpected Utility Experiments

    Get PDF
    Recent experimental evidence suggests that standard expected utility is violated in a wide variety of ways: losses are treated differently from gains, people are generally risk averse over gains and risk loving over losses, fanning and curvature effects exist, problem representation matters, and preference reversals are pervasive. An effort is made to suggest how these effects will change results from models based on expected utility theory, and how researchers who use expected utility in their analysis should react to these findings.Expected Utility Theory; Non Expected Utility; Risk Averse; Risk

    The Probability Premium Approach to Comparative Risk Aversion

    Get PDF
    Retirement_SavingsIn the framework of expected utility, nth-degree risk aversion/loving is unequivocally characterized by the sign of the nth-order derivative of the utility function, but there exist different notions of one decision maker being nth-degree more risk averse than another. This paper first reformulates Pratt’s (1964) probability premium approach to comparative (2nd-degree) risk aversion with a nonrandom starting wealth, and then shows that the reformulated probability premium approach can be easily extended to deal with random starting wealth and comparative nth-degree risk aversion. The paper shows that interpersonal comparisons of various versions of probability premia for nth-degree risk aversion are characterized by the (n/m)th-degree Ross more risk aversion of Liu and Meyer (2013), where n > m >1. Besides the original Pratt setting, the same comparative nth-degree risk aversion extends to probability premia derived from the risk apportionment setting of Eeckhoudt and Schlesinger (2006) and the comparative statics setting of Jindapon and Neilson (2007)

    Identifying the science and technology dimensions of emerging public policy issues through horizon scanning

    Get PDF
    Public policy requires public support, which in turn implies a need to enable the public not just to understand policy but also to be engaged in its development. Where complex science and technology issues are involved in policy making, this takes time, so it is important to identify emerging issues of this type and prepare engagement plans. In our horizon scanning exercise, we used a modified Delphi technique [1]. A wide group of people with interests in the science and policy interface (drawn from policy makers, policy adviser, practitioners, the private sector and academics) elicited a long list of emergent policy issues in which science and technology would feature strongly and which would also necessitate public engagement as policies are developed. This was then refined to a short list of top priorities for policy makers. Thirty issues were identified within broad areas of business and technology; energy and environment; government, politics and education; health, healthcare, population and aging; information, communication, infrastructure and transport; and public safety and national security.Public policy requires public support, which in turn implies a need to enable the public not just to understand policy but also to be engaged in its development. Where complex science and technology issues are involved in policy making, this takes time, so it is important to identify emerging issues of this type and prepare engagement plans. In our horizon scanning exercise, we used a modified Delphi technique [1]. A wide group of people with interests in the science and policy interface (drawn from policy makers, policy adviser, practitioners, the private sector and academics) elicited a long list of emergent policy issues in which science and technology would feature strongly and which would also necessitate public engagement as policies are developed. This was then refined to a short list of top priorities for policy makers. Thirty issues were identified within broad areas of business and technology; energy and environment; government, politics and education; health, healthcare, population and aging; information, communication, infrastructure and transport; and public safety and national security

    Tracking down carbon inputs underground from an arid zone Australian calcrete.

    Get PDF
    Freshwater ecosystems play a key role in shaping the global carbon cycle and maintaining the ecological balance that sustains biodiversity worldwide. Surficial water bodies are often interconnected with groundwater, forming a physical continuum, and their interaction has been reported as a crucial driver for organic matter (OM) inputs in groundwater systems. However, despite the growing concerns related to increasing anthropogenic pressure and effects of global change to groundwater environments, our understanding of the dynamics regulating subterranean carbon flows is still sparse. We traced carbon composition and transformations in an arid zone calcrete aquifer using a novel multidisciplinary approach that combined isotopic analyses of dissolved organic carbon (DOC) and inorganic carbon (DIC) (δ13CDOC, δ13CDIC, 14CDOC and 14CDIC) with fluorescence spectroscopy (Chromophoric Dissolved OM (CDOM) characterisation) and metabarcoding analyses (taxonomic and functional genomics on bacterial 16S rRNA). To compare dynamics linked to potential aquifer recharge processes, water samples were collected from two boreholes under contrasting rainfall: low rainfall ((LR), dry season) and high rainfall ((HR), wet season). Our isotopic results indicate limited changes and dominance of modern terrestrial carbon in the upper part (northeast) of the bore field, but correlation between HR and increased old and 13C-enriched DOC in the lower area (southwest). CDOM results show a shift from terrestrially to microbially derived compounds after rainfall in the same lower field bore, which was also sampled for microbial genetics. Functional genomic results showed increased genes coding for degradative pathways-dominated by those related to aromatic compound metabolisms-during HR. Our results indicate that rainfall leads to different responses in different parts of the bore field, with an increase in old carbon sources and microbial processing in the lower part of the field. We hypothesise that this may be due to increasing salinity, either due to mobilisation of Cl- from the soil, or infiltration from the downstream salt lake during HR. This study is the first to use a multi-technique assessment using stable and radioactive isotopes together with functional genomics to probe the principal organic biogeochemical pathways regulating an arid zone calcrete system. Further investigations involving extensive sampling from diverse groundwater ecosystems will allow better understanding of the microbiological pathways sustaining the ecological functioning of subterranean biota

    TXS 0506+056 with Updated IceCube Data

    Get PDF
    Past results from the IceCube Collaboration have suggested that the blazar TXS 0506+056 is a potential source of astrophysical neutrinos. However, in the years since there have been numerous updates to event processing and reconstruction, as well as improvements to the statistical methods used to search for astrophysical neutrino sources. These improvements in combination with additional years of data have resulted in the identification of NGC 1068 as a second neutrino source candidate. This talk will re-examine time-dependent neutrino emission from TXS 0506+056 using the most recent northern-sky data sample that was used in the analysis of NGC 1068. The results of using this updated data sample to obtain a significance and flux fit for the 2014 TXS 0506+056 "untriggered" neutrino flare are reported

    Conditional normalizing flows for IceCube event reconstruction

    Get PDF
    corecore