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1. Introduction 

Consider the following scenario.  An individual’s wealth is currently given by the random 

variable w .  He has the opportunity to improve his wealth, but only if the good state G occurs; 

otherwise, his wealth worsens.  With probability p the good state occurs and his wealth is Gw  

where ( ) ( )GEu w Eu w , and with probability 1 – p the bad state occurs and his wealth is Bw  

where ( ) ( )BEu w Eu w . 

Examples of such a setting abound.  An individual could choose to pre-pay for a hotel 

room at the beach, making him better off unless it rains.  An individual could consider changing 

companies for a higher-paying job which will increase his wealth unless the destination company 

hits troubled times and must lay him off.  An individual could consider purchasing an illiquid 

asset that would improve his wealth position unless an emergency occurs and he needs the funds 

for something else.  An individual could also hire a lawyer to recover a financial loss in court 

which will improve his financial position only if the case is won.  

A famous exploration of this setting comes in Pratt (1964) in his definition of the 

probability premium, which is intended to measure the strength of risk aversion.  In this case 

initial wealth w  is non-stochastic and fixed at w, the good lottery Gw  is w   for certain, where 

0  , and the bad lottery Bw  is w   for sure.  He defines the probability premium q as the 

probability of the good event G that makes the individual indifferent between initial wealth w 

and the event-dependent lottery.1  His central theorem establishes that one individual always 

                                                             
1 Variations on the Pratt probability premium have been recently employed in experimental work to quantify risk 

aversion, notably the “uncertainty premium” experiments of Andreoni and Sprenger (2012) and Callen et al. 

(2014).  In their case the initial lottery w  pays the amount x > 0 with probability px and the higher outcome y > x 

otherwise.  The good lottery Gw  is y for sure, while the bad lottery Bw  is 0 with certainty. They define the 
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requires a higher probability premium than another if and only if the first individual is Arrow-

Pratt more risk averse than the second one. 

The purpose of this paper is to identify Gw  and Bw  in relation to initial wealth w , for 

which the required probability of the good state that ensures equivalence in expected utility 

between w  and the state-dependent lottery – the probability premium – provides a measure of 

nth-degree risk aversion, and to characterize the interpersonal comparison of the probability 

premium.  Doing this generalizes Pratt’s probability premium approach to comparative risk 

aversion to random starting wealth and to risk aversion of higher degrees.   

Specifically, a general nth-degree increase in risk is one that holds the first n – 1 

moments of the distribution constant but makes worse off every expected utility maximizer 

whose utility function has an nth derivative satisfying 1 ( )( 1) ( ) 0n nu x  , as in Ekern (1980).  The 

familiar Rothschild-Stiglitz (1970) mean-preserving spread is a 2nd-degree increase in risk, and 

a 1st-degree increase in risk would be a first-order stochastically dominated shift.  In compound 

binary lotteries, i.e., Gw  with probability p and Bw  with probability 1 – p, the bad-state lottery 

Bw differs from w  by an nth-degree increase in risk and the good-state lottery Gw  differs from w  

by an mth-degree reduction in risk, with 1n m  .  Then the value of p that equalizes the 

expected utility from w  and the expected utility from the binary compound lottery provides a 

probability-like measure of nth-degree risk aversion in terms of compensation by an mth-degree 

reduction is risk.  The central result is that u(x) always has a higher probability premium than 

                                                             
uncertainty premium q as the probability of G that makes the individual indifferent between the initial lottery w  and 

the event-dependent lottery yielding y with probability q and 0 with probability 1 – q. Holt and Laury (2002) uses a 

similar but slightly different probability-like measure to quantify the strength of risk aversion in their experiments. 
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v(x) if and only if u is (n/m)th-degree Ross more risk averse than v as defined by Liu and Meyer 

(2013), a notion that includes Ross more risk aversion as a special case (Ross 1981). 

We then extend the probability premium approach to the risk apportionment literature 

begun by Eeckhoudt and Schlesinger (2006) and Eeckhoudt et al. (2009).  These works show 

that nth-degree risk aversion, i.e., aversion to nth-degree risk increases, can be characterized by 

preferences over 50-50 lotteries that display a preference for risk apportionment: combining 

“good” with “bad” is preferred to combining “good” with “good” and “bad” with “bad”.  While 

risk apportionment has proven useful for characterizing higher-degree risk attitudes, it has 

yielded only limited success for comparing those attitudes across individuals with the one 

example being Jindapon’s (2010) examination of comparative downside risk aversion.2  

Extending the probability premium approach to risk apportionment allows for a comparison of 

nth-degree risk aversion across individuals.  Interestingly, the approach also yields multiple 

versions of the probability premium for measuring nth-degree risk aversion (there is a unique 

version when n = 2), and when n = 3 these alternatives provide insight into comparative 

downside risk aversion or prudence. 

We go on to extend the probability premium to the comparative statics setting introduced 

by Jindapon and Neilson (2007).  Unlike the risk apportionment approach, the comparative 

statics approach was designed to facilitate interpersonal comparisons.  The results here match 

and extend those in Jindapon and Neilson (2007), confirming the robustness of the probability 

premium approach to comparative risk attitudes.  The comparative statics problem itself involves 

an individual facing a compound binary lottery choosing how to allocate resources between an 

                                                             
2 See also Watt (2011).  
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nth-degree risk reduction in one state and an mth-degree risk reduction in the other, with n > m ≥ 

1.  (n/m)th-degree Ross more risk aversion is both sufficient and necessary for devoting more 

effort to the nth-degree risk reduction. 

All told, this paper uses the probability premium approach to explore three different 

problems involving compound binary lotteries where the individual faces lottery 𝑤̃1 when event 

1 occurs and lottery 𝑤̃2 when event 2 occurs.  The generalized Pratt probability premium setting 

looks at assigning probabilities to the two events to leave the individual indifferent between the 

binary compound lottery and the status quo, the risk apportionment setting examines assigning 

additional risks to the two events, and the comparative statics setting explores devoting resources 

to the two events.  In all of these settings behavior is governed by (n/m)th-degree Ross more risk 

aversion as characterized by Liu and Meyer (2013), where n > m ≥ 1. 

Recent experimental studies have demonstrated, in various contexts, a salient aversion to 

risk increases of 3rd and even higher degrees.3  At the same time, experimentalists have 

developed tools designed to measure comparative 2nd-degree risk aversion in the lab.4  The 

results of this paper can be used to construct new risk aversion measures that are compatible with 

common notions of comparative risk preferences, and therefore do not require specific functional 

forms to induce increased risk aversion.5  In the future, economists and other social scientists 

may want to investigate the determining factors of the strength of 3rd- and higher-degree risk 

aversion, just as they have extensively done so for the 2nd-degree risk aversion.  It is our hope 

                                                             
3 For example, see Deck and Schlesinger (2010, 2014), Ebert and Wiesen (2011), Grossman and Eckel (2012), 

Maier and Ruger (2011) and Noussair et al. (2014). 
4 For example, see Holt and Laury (2002), and Eckel and Grossman (2002). 
5 Both the Holt-Laury and the Eckel-Grossman papers assume constant relative risk aversion. 
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that the results in this paper will deepen the understanding of, and help in creating alternative 

measures for, the intensity of nth-degree risk aversion.  

The rest of the paper is organized as follows.  We first reformulate the original 

probability premium approach of Pratt (1964).  It shows that Pratt’s result still holds for the 

reformulated probability premium: u(x) always requires a larger reformulated probability 

premium for a risk introduction than v(x) if and only if u(x) is Arrow-Pratt more risk averse than 

v(x).  Then, in Section 3, we demonstrate that the reformulated probability premium approach 

can be easily extended to deal with random starting wealth and comparative nth-degree risk 

aversion.  Specifically, for n = 2 with random starting wealth, the paper establishes that u(x) 

always requires a larger reformulated probability premium than v(x) if and only if u(x) is Ross 

more risk averse than v(x); for 3n  , the paper shows that there exist multiple versions of the 

probability premium for measuring nth-degree risk aversion, each corresponding to the notion of 

the (n/m)th-degree Ross more risk aversion of Liu and Meyer (2013), for an appropriately chosen 

m such that 1n m  .  Section 4 extends the probability premium to the risk apportionment 

approach of Eeckhoudt and Schlesinger (2006), and Section 5 extends it to the comparative 

statics approach of Jindapon and Neilson (2007).  Section 6 offers brief conclusions.   

 

2.  A Reformulation of Pratt’s Probability Premium Approach to Measuring Risk Aversion 

In this section, we propose a reformulation of Pratt’s probability premium approach to 

measuring risk aversion.  Pratt’s approach is briefly reviewed first.  For decision maker ( )u x  

with ( ) 0u x   and ( ) 0u x  , 

1 1
( ) ( ) ( )

2 2
u w u w u w          (1) 
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for all w and all 0  .  Pratt (1964) defines the probability premium uq , a measure of risk 

aversion, as the additional probability shifted to the favorite outcome – which is w   – that is 

needed to make the decision maker indifferent between the certain outcome and the uncertain 

outcome.  That is, 

1 1
( ) ( ) ( )

2 2
u uu w q u w q u w 

   
        
   

.   (2) 

It is easy to see that for any given w and 0  , there is a unique 1
2

(0, )uq   such that (2) 

is satisfied.  Pratt goes on to demonstrate that u vq q  for all w and all 0   if and only if u(x) is 

Arrow-Pratt more risk averse than v(x), i.e., ( ) / ( ) ( ) / ( )u x u x v x v x       for all x. 

  The starting point of the reformulated probability premium approach is to observe that, 

for decision maker ( )u x  with ( ) 0u x   and ( ) 0u x   and for any positive constant k and non-

degenerate zero-mean random variable  , w + k is strictly preferred to w which is in turn strictly 

preferred to w  .  Then, consider a comparison between the certain outcome w and a 

(compound) binary lottery with w + k and w   as its outcomes in, respectively, the good and 

bad states: 

     
,

.
, 1

w k with probability p
w vs

w with probability p




 
    (3) 

Obviously, the larger the probability of the good state p, the more attractive the binary lottery.  It 

can be easily shown that there is a unique (0,1)up   – for any given w, k and   – such that u(x) 

is indifferent between the two sides in (3), or 

  ( ) ( ) (1 ) ( )u uu w p u w k p Eu w      .     (4) 
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Definition 1.  Given w, k > 0 and non-degenerate   with 0E  , the (reformulated) probability 

premium for decision maker u(x), denoted up , is determined by (4).   

up  is larger than zero only because u(x) is risk averse, and a larger up  implies a greater 

compensation for the introduction of the pure risk  .  So up  is a natural measure of risk aversion 

for u(x).   Note also that up  and uq  are closely related.  Let k   and   have two outcomes,   

and  , with equal probability ½ in (4). Then it is easy to see that 2u up q . 

Similarly, one can define vp  for v(x).  The following theorem shows that, like both the 

risk premium and Pratt’s probability premium uq , interpersonal comparison of the reformulated 

probability premium up  is characterized by the Arrow-Pratt more risk aversion. 

Theorem 1.  u vp p  for all w, k and   if and only if u(x) is Arrow-Pratt more risk averse than 

v(x). 

Proof: “if”   

 Suppose ( ) / ( ) ( ) / ( )u x u x v x v x       at every x.  Then according to Pratt (1964), there 

exists a transformation function ( )g   with 0g   and 0g   such that  ( ) ( )u x g v x . Because 

vp  satisfies ( ) ( ) (1 ) ( )v vv w p v w k p Ev w      , we have 

   

   

   

( ) ( ) ( ) (1 ) ( )

( ) (1 ) ( )

( ) (1 ) ( ),

v v

v v

v v

u w g v w g p v w k p Ev w

p g v w k p g Ev w

p u w k p Eu w







     

    

    

 

which implies u vp p .  

“only if” 
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        Use proof by contradiction.  Suppose that at some 0x ,  0 0 0 0( ) / ( ) ( ) / ( )u x u x v x v x      . 

Then continuity would imply ( ) / ( ) ( ) / ( )u x u x v x v x       for all x in a small neighborhood of 

0x .   With similar steps to those taken in the “if” part above, we can show that u vp p   for w 

that is close enough to 0x , and k and   that are sufficiently small.  This contradicts the condition 

that u vp p  for all w, k and  . Q.E.D. 

   

3.  Extensions to Random Starting Wealth and to Comparative nth-Degree Risk Aversion 

 

3.1 Random Starting Wealth 

 To allow for random starting wealth levels as Ross (1981) does, consider the following 

comparison: 

,
.

, 1

z with probability p
w vs

y with probability p





,     (5) 

where w  is a random starting wealth, y  is a Rothschild and Stiglitz (1970) risk increase from 

,w  and z  1st-degree stochastically dominates w .  Note that the change from (3) to (5) is two-

fold.  First, the certain starting wealth w is replaced with the random starting wealth w , and as a 

result, adding   to w is replaced with increasing the risk from w  to y .  Second, adding k > 0 to 

w is replaced with improving w  to z , a 1st-degree stochastically dominant change that includes 

adding k > 0 to w  as a special case.    
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Obviously, for any u(x) with ( ) 0u x   and ( ) 0u x  , there is a unique (0,1)up   – for 

any given w , y  and z  described above – such that u(x) is indifferent between the two sides of 

(5), or 

   ( ) ( ) (1 ) ( )u uEu w p Eu z p Eu y   .       (6) 

Similarly, one can define vp  for v(x).  Comparing up  and vp  leads to the following theorem that 

is a special case of Theorem 3, which is proved in the next subsection. 

Theorem 2.  u vp p  for all w , y  and z  such that y  is more risky than w  and z  dominates w  

in the 1st-degree stochastic dominance if and only if u(x) is Ross more risk averse than v(x). 

 

3.2 The Probability Premium for Measuring nth-Degree Risk Aversion ( 2n  ) 

  The comparison in (5) and the probability premium defined in (6) for 2nd-degree risk 

aversion can be easily generalized to provide a measuring stick for nth-degree risk aversion.  We 

begin with a review of the definitions of ith-degree risk aversion and ith-degree risk increases, 

where 1i  . 

Let F(x) and G(x) represent the cumulative distribution functions (CDF) of two random 

variables whose supports are contained in a finite interval denoted [a, b] with no probability 

mass at point a.  This implies that F(a) = G(a) = 0 and F(b) = G(b) = 1.  Letting F[1](x) denote 

F(x), higher order cumulative functions are defined according to 

[ ] [ 1]( ) ( ) , 2,3,
x

k k

a
F x F y dy k   .  Similar notation applies to G(x) and other CDFs. For any 

utility function u(x): [a, b]   R1, assume that u C .  Denote by ( ) ( )ku x  the kth derivative of 

u(x), k = 1, 2, 3... .   
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For any integer 1i  , Ekern (1980) gives the following definition. 

Definition 2.  

(i)   Decision maker u(x) is ith-degree risk averse if 

 1 ( )( 1) ( ) 0i iu x           for all x in [a, b].      (7)  

(ii)   G(x) has more ith-degree risk than F(x) if 

 G[k](b) = F[k](b)             for k = 1, 2, …, i, and     (8) 

 [ ] [ ]( ) ( )i iG x F x          for all x in [a, b] with “>”  holding for some x in (a, b) . (9) 

Note that u(x) is said to be ith-degree weakly risk averse when the strict inequality in (7) 

is replaced with a weak one.  Note also that the 1st-degree risk increase is the same as the 1st-

degree stochastically dominated change, and for 2i  , the ith-degree risk increase is a special 

case of the ith-degree stochastically dominated change where the kth moment is kept the same 

for all 1 k i  .6  The relationship between the two concepts in Definition 2 is given in Lemma 1 

below that is proved by Ekern. 

Lemma 1.  G(x) has more ith-degree risk than F(x) if and only if every ith-degree risk averse 

decision maker prefers F(x) to G(x). 

Now assume that m and n are any two positive integers such that 1n m  , and consider 

the following comparison: 

,
.

, 1

z with probability p
w vs

y with probability p





,     (5’) 

                                                             
6 Ekern’s definition of ith-degree risk increase includes the Rothschild and Stiglitz risk increase (corresponding to i 

= 2) and the downside risk increase due to Menezes et al. (1980) (corresponding to i = 3) as special cases. 
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where w  is a random starting wealth, y  is an nth-degree risk increase from w , and z  is an mth-

degree risk decrease from w .  Obviously, for any u(x) that is both mth-degree risk averse and 

nth-degree risk averse, there is a unique (0,1)up   – for any given w , y  and z  such that y  is 

an nth-degree risk increase from w , and z  is an mth-degree risk decrease from w  – so that u(x) 

is indifferent between the two sides of (5’), or 

   ( ) ( ) (1 ) ( )u uEu w p Eu z p Eu y   .       (6’) 

Similarly, one can define vp  for v(x).  Comparing up  and vp  leads to Theorem 3 below.  Before 

stating the theorem, we first give the following definition and lemma. 

Continuing to assume that m and n are any two positive integers such that 1n m  , let 

the two utility functions u(x) and v(x) each be both nth-degree and mth-degree risk averse on [a, 

b].  The following definition of (n/m)th-degree Ross more risk aversion from Liu and Meyer 

(2013) includes the existing definition of nth-degree Ross more risk aversion as a special case in 

which m = 1.7  

 

Definition 3.   u(x) is (n/m)th-degree Ross more risk averse than v(x) on [a, b] if  

   
1 ( ) 1 ( )

1 ( ) 1 ( )

( 1) ( ) ( 1) ( )

( 1) ( ) ( 1) ( )

n n n n

m m m m

u x v x

u y v y

 

 

 


 
 for all x, y  [ , ]a b ,  (10) 

or equivalently, if there exists 0  ,  such that 
( ) ( )

( ) ( )

( ) ( )

( ) ( )

n m

n m

u x u y

v x v y
   for all x, y  [ , ]a b . 

 

                                                             
7 The nth-degree Ross more risk aversion studied in Jindapon and Neilson (2007), Li (2009) and Denuit and 

Eeckhoudt (2010) generalizes the well-known Ross more risk aversion (n = 2) in Ross (1981) and the Ross more 

downside risk aversion (n = 3) in Modica and Scarsini (2005). 
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The following lemmas regarding the (n/m)th-degree Ross more risk averse condition will 

be used in proving the main results in the paper.  

Lemma 2.  u(x) is (n/m)th-degree Ross more risk averse than v(x) on [a, b] if and only if there 

exist  > 0 and ( )x  with 1 ( )( 1) ( ) 0m m x   and 1 ( )( 1) ( ) 0n n x   for all x in [a, b]  such that

( ) ( ) ( )u x v x x   . 

Lemma 3.  If u(x) is NOT (n/m)th-degree Ross more risk averse than v(x) on [a, b], then there 

exist  > 0, 1 1[ , ] ( , )a b a b  and  2 2[ , ] ( , )a b a b  such that ( ) ( ) ( )x u x v x    satisfies 

1 ( )

1 1

1 ( )

2 2

( 1) ( ) 0 for all x [ , ]

( 1) ( ) 0 for all x [ , ]

n n

m m

x a b

x a b









  

  
  

Proof: The proof of Lemma 2 is straightforward, and the proof of Lemma 3 is as follows. If u(x) 

is NOT (n/m)th-degree Ross more risk averse than v(x) on [a, b], then there exist some y and z 

[ , ]a b  and 0  , such that      

( ) ( )

( ) ( )

( ) ( )

( ) ( )

n m

n m

u y u z

v y v z
   , 

which implies, due to continuity, that there exist 1 1[ , ] ( , )a b a b  and  2 2[ , ] ( , )a b a b  such that             

  
( ) ( )

( ) ( )

( ) ( )

( ) ( )

n m

n m

u y u z

v y v z
     for all y 1 1[ , ]a b  and all z 2 2[ , ]a b .   

Define ( ) ( ) ( )x u x v x   .  Differentiating yields  

1 ( ) 1 ( ) 1 ( )

1 1

1 ( ) 1 ( ) 1 ( )

2 2

( 1) ( ) ( 1) ( ) ( 1) ( ) 0 for all x [ , ]

( 1) ( ) ( 1) ( ) ( 1) ( ) 0 for all x [ , ]

n n n n n n

m m m m m m

x u x v x a b

x u x v x a b

 

 

  

  

      

      
  

           Q.E.D. 
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 We are now ready to state and prove the following theorem that includes Theorem 2 as a 

special case in which n = 2 and m = 1. 

Theorem 3.  u vp p  for all w , y  and z  such that y  is nth-degree more risky than w  and z  is 

mth-degree less risky than w  if and only if u(x) is (n/m)th-degree Ross more risk averse than 

v(x). 

 Proof: For any given w , y  and z  such that y  is nth-degree more risky than w  and z  is mth-

degree less risky than w , define  

( ) ( ) [ ( ) (1 ) ( )]U p Eu w pEu z p Eu y    .      (11) 

Clearly, ( ) ( ) ( ) 0U p Eu y Eu z     because u(x) is both mth-degree risk averse and nth-degree 

risk averse.  By construction, ( ) 0uU p  , where (0,1)up   is given by (6’).  ( )V p  for v(x) can be 

similarly defined, and ( ) 0vV p  .  

“if” 

 Suppose that u(x) is (n/m)th-degree Ross more risk averse than v(x).  Then, from Lemma 

2, there exist  > 0 and ( )x  with 1 ( )( 1) ( ) 0m m x   and 1 ( )( 1) ( ) 0n n x   for all x in [a, b] such 

that ( ) ( ) ( )u x v x x   . Note that ( )x  is mth-degree weakly risk tolerant and nth-degree 

weakly risk averse. 

 Evaluating ( )U p  at vp , we have 

( ) ( ) ( ) [ ( ) (1 ) ( )]

( ) [ ( ) (1 ) ( )]

[ ( ) ( )] (1 )[ ( ) ( )]

0.

v v v v

v v

v v

U p V p E w p E z p E y

E w p E z p E y

p E w E z p E w E y

   

  

   

    

   

    



    (12) 
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The inequality in (12) is from that ( )x  is weakly mth-degree risk tolerant and weakly nth-

degree risk averse.  Because ( )U p  is strictly decreasing in p, we have u vp p . 

 “only if” 

 Suppose that u vp p  for all w , y  and z  such that y  is nth-degree more risky than w  

and z  is mth-degree less risky than w .  To prove that u(x) is (n/m)th-degree Ross more risk 

averse than v(x), assume otherwise.  Then, according to Lemma 3, there exist  > 0,  

1 1[ , ] ( , )a b a b  and  2 2[ , ] ( , )a b a b , such that ( ) ( ) ( )x u x v x    satisfies 

1 ( )

1 1

1 ( )

2 2

( 1) ( ) 0 for all x [ , ]

( 1) ( ) 0 for all x [ , ]

n n

m m

x a b

x a b









  

  
    (13) 

Now denote the CDFs for w , y  and z  as F(x), G(x) and H(x), respectively, and choose 

F(x), G(x) and H(x) such that    

[ ] [ ] [ ] [ ]

1 1 2 2

[ ] [ ] [ ] [ ]

1 1 2 2

0 ( , ) 0 ( , )

0 ( , ) 0 ( , )

n n m m

n n m m

G F x a b F H x a b

G F x a b F H x a b

      
 

      

.       (14) 

Evaluating ( )U p  at vp , we have 

1 ( ) [ ] [ ]

( ) ( ) ( ) [ ( ) (1 ) ( )]

( ) [ ( ) (1 ) ( )]

[ ( ) ( )] (1 )[ ( ) ( )]

( ) [ ( ) ( )] (1 ) ( ) [ ( ) ( )]

( 1) ( )[ ( ) ( )]

v v v v

v v

v v

b b

v v
a a

b
m m m m

v
a

U p V p E w p E z p E y

E w p E z p E y

p E w E z p E w E y

p x d F x H x p x d F x G x

p x H x F x d

   

  

   

 



    

   

    

    

  

 


2 1

2 1

1 ( ) [ ] [ ]

1 ( ) [ ] [ ] 1 ( ) [ ] [ ]

(1 ) ( 1) ( )[ ( ) ( )]

( 1) ( )[ ( ) ( )] (1 ) ( 1) ( )[ ( ) ( )]

0.

b
n n n n

v
a

b b
m m m m n n n n

v v
a a

x p x G x F x dx

p x H x F x dx p x G x F x dx



 



 

   

      





 

       (15) 

The inequality in (15) is from (13) and (14).  Because ( )U p  is strictly decreasing in p, we have 

u vp p , a contradiction. Therefore, u(x) must be (n/m)th-degree Ross more risk averse than v(x). 



15 

 

Q.E.D.  

 

4. An Alternative Probability Premium Approach to Comparative Risk Aversion Based on 

Risk Apportionment 

In the framework of expected utility, nth-degree risk aversion, i.e., aversion to nth-degree 

risk increases, is characterized by a positive 1 ( )( 1) ( )n nu x  for all x, where ( ) ( )nu x  is the nth 

derivative of utility function u(x) (Ekern 1980).  Eeckhoudt and Schlesinger (2006) and 

Eeckhoudt et al. (2009) further establish that 1 ( )( 1) ( )n nu x  being positive for all x can be 

characterized by preferences over 50-50 lotteries that display a preference for combining “good” 

with “bad” over combining “good” with “good” and “bad” with “bad”, where “good” is a risk 

reduction of various degrees from “bad”.  In other words, a decision maker’s “direction” in nth-

degree risk attitude can be explained by “risk apportionment”. 

 In this section we examine an alternative probability premium approach to comparative 

risk aversion that is based on risk apportionment.  We define a probability premium as the 

“strength” measure of nth-degree risk aversion, and show that interpersonal comparison of this 

probability premium is also governed by (n/m)th-degree Ross more risk aversion. 

 

4.1. The General Results 

Again, let n and m be two integers such that n > m ≥ 1.  Suppose that jy   has more jth-

degree risk than jx  (j = m, n-m), and that the random variables with subscript m are independent 
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of those with subscript n-m.  For individuals who are jth-degree risk averse, therefore, jx  are 

“relatively good” and jy  are “relatively bad”.   

In the following theorem that generalizes the results of Eeckhoudt and Schlesinger 

(2006), Eeckhoudt et al. (2009) show that all nth-degree risk averse individuals would prefer 

combining the relatively good with the relatively bad in a half-half lottery to combining the 

relatively good with the relatively good and the relatively bad with the relatively bad.8 

Theorem 4. (Eeckhoudt et al. 2009). Suppose that jy  has more jth-degree risk than jx  for j = m, 

n-m. The 50-50 lottery [ mx + n mx  , my + n my  ] has more nth-degree risk than the 50-50 lottery [ mx

+ n my  , my + n mx  ]. 

According to Theorem 4, u(x) being nth-degree risk averse implies that, for any given m such  

that n > m ≥ 1, 

 
1 1 1 1

( ) ( ) ( ) ( )
2 2 2 2

m n m m n m m n m m n mEu x y Eu y x Eu x x Eu y y                        (16)  

for all jx  and jy   (j = m, n-m) such that jy  has more jth-degree risk than jx . 

 Based on (16), we can define the “mth probability premium of nth-degree risk aversion” 

for u(x), denoted /n m

uq .  In addition to assuming that u(x) is nth-degree risk averse so that 

inequality (16) holds, it is also assumed that u(x) is both mth-degree risk averse and (n-m)th-

                                                             
8 Eeckhoudt et al. (2009) present theorems both for the case where the relatively bad is an nth-degree risk increase 

from the relatively good, and for the case where the relatively bad is nth-degree stochastically dominated by the 

relatively good.  For the purpose of the present paper, we only need to consider the case of risk increases.  
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degree risk averse.9  These assumptions imply that m n mx x   is preferred to m n my x   and 

m n mx y  , both of which are in turn preferred to m n my y  . 

Definition 4.  The mth probability premium of nth-degree risk aversion for u(x), denoted /n m

uq , is 

the solution to 

 
   

   

1 1
2 2

1 1
2 2

( ) ( )

( ) ( )

m n m m n m

m n m m n m

q Eu x y q Eu y x

q Eu x x q Eu y y

 

 

    

     
    (17) 

It can be easily seen that there is a unique / 1
2

(0, )n m

uq   satisfying (17), given jx  and jy   (j 

= m, n-m) such that jy  has more jth-degree risk than jx . 

 A question immediately arises about the uniqueness of the probability premium as there 

seem to be alternative ways to define a probability premium of nth-degree risk aversion based on 

(16) by using, instead of (17), the following equations: 

   
   

   

1 1
2 2

1 1
2 2

( ) ( )

( ) ( )

m n m m n m

m n m m n m

q Eu x y q Eu y x

q Eu x x q Eu y y

 

 

    

     
    (17’) 

or    

   1 1
2 2

1 1
( ) ( )

2 2

( ) ( )

m n m m n m

m n m m n m

Eu x y Eu y x

q Eu x x q Eu y y

 

 

  

     

    (17”) 

 Indeed, we have the following Definition 5 based on (17”).  On the other hand, the q that 

is determined by (17’) is simply /( )n n m

uq  , a concept already defined in Definition 4. 

                                                             
9 This parallels the assumption of ( ) 0u x   in defining the probability premium for the regular 2nd-degree risk 

aversion.  
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Definition 5.  The consolidated mth probability premium of nth-degree risk aversion for u(x), 

denoted /n m

uq , is the solution to (17”). 

It can be easily seen that there is a unique / 1
2

(0, )n m

uq   satisfying (17”), given jx  and jy   

(j = m, n-m) such that jy  has more jth-degree risk than jx . 

 The following theorem shows that interpersonal comparison of /n m

uq  is governed by 

(n/m)th-degree Ross more risk aversion. 

Theorem 5.  / /n m n m

u vq q  for all jx  and jy   (j = m, n-m) such that jy  has more jth-degree risk 

than jx  if and only if u(x) is (n/m)th-degree Ross more risk averse than v(x). 

Proof:  For any given jx  and jy   (j = m, n-m) such that jy  has more jth-degree risk than jx , 

define  

   

    

1 1
2 2

1 1
2 2

( ; ) ( ) ( )

( ) ( )

m n m m n m

m n m m n m

q u q Eu x y q Eu y x

q Eu x x q Eu y y

 

 

      

     
  

Differentiating with respect to q yields 

   

   

'( ; )

0.

m n m m n m

m n m m n m

q u Eu y x Eu x x

Eu y y Eu x y

 

 

      

     



 

Both bracketed terms above are negative because my  has more mth-degree risk than mx  and the 

individual is mth-degree risk averse.  Similarly, ( ; )q v  can be defined and it can be showed that 

( ; ) 0q v  .  By construction, /( ; ) 0n m

uq u   and /( ; ) 0n m

vq v  .  According to Theorem 4, 

(0; ) 0u   and (0; ) 0v  .  Therefore, / 0n m

uq   and / 0n m

vq  .   

“if” 
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 According to Lemma 2, if u(x) is (n/m)th-degree Ross more risk averse than v(x),  then 

there exist 0   and ( )x  with 1 ( )( 1) ( ) 0m m x   and 1 ( )( 1) ( ) 0n n x   for all x in [a, b] such 

that ( ) ( ) ( )u x v x x   .  Note that ( )x  is mth-degree weakly risk tolerant and nth-degree 

weakly risk averse.  

Evaluating at /n m

vq  yields 

 

               

               

/ /

/ / / /1 1 1 1
2 2 2 2

/ / / /1 1 1 1
2 2 2 2

1
2

( ; ) ( ; )n m n m

v v

n m n m n m n m

v m n m v m n m v m n m v m n m

n m n m n m n m

v m n m v m n m v m n m v m n m

m

q u q v

q E x y q E y x q E x x q E y y

q E x y q E y x q E x x q E y y

E x



   

   



   

   

  

            
 

            
 

         
        

1 1 1
2 2 2

/ [ ] [ ]

0

n m m n m m n m m n m

n m

v m n m m n m m n m m n m

y E y x E x x E y y

q E y x E x x E y y E x y

  

   

   

   

       

       



  

The week inequality above holds because both braced terms are nonnegative.  The first braced 

term is nonnegative because ( )x  is nth-degree weakly risk averse (Theorem 4), and the second 

braced term is nonnegative because ( )x  is mth-degree weakly risk tolerant. 

Due to '( ; ) 0q u  , therefore,  we have / /n m n m

u vq q . 

“only if” 

 Suppose that / /n m n m

u vq q  for all jx  and jy   (j = m, n-m) such that jy  has more jth-degree 

risk than jx  but u(x) is NOT (n/m)th-degree Ross more risk averse than v(x). Then, according to 

Lemma 3, there exist  > 0, 1 1[ , ] ( , )a b a b  and  2 2[ , ] ( , )a b a b  such that ( ) ( ) ( )x u x v x    

satisfies 



20 

 
1 ( )

1 1

1 ( )

2 2

( 1) ( ) 0 for all x [ , ]

( 1) ( ) 0 for all x [ , ]

n n

m m

x a b

x a b









  

  
        (18) 

 Evaluating at /n m

vq , we have 

               

               

/ /

/ / / /1 1 1 1
2 2 2 2

/ / / /1 1 1 1
2 2 2 2

1
2

( ; ) ( ; )n m n m

v v

n m n m n m n m

v m n m v m n m v m n m v m n m

n m n m n m n m

v m n m v m n m v m n m v m n m

m

q u q v

q E x y q E y x q E x x q E y y

q E x y q E y x q E x x q E y y

E x



   

   



   

   

  

            
 

            
 

         
        

1 1 1
2 2 2

/ [ ] [ ] ,

n m m n m m n m m n m

n m

v m n m m n m m n m m n m

y E y x E x x E y y

q E y x E x x E y y E x y

  

   

   

   

       

       

  (19)  

where ( )x  satisfies (18). 

 Applying the same technique used in the proof of Theorem 3, choose jx  and jy   (j = m, 

n-m) appropriately so that the first braced term in the last expression of (19) is negative due to 

1 ( )

1 1( 1) ( ) 0 for all x [ , ]n n x a b   , and the second braced term is also negative due to 

1 ( )

2 2( 1) ( ) 0 for all x [ , ]m m x a b   .    

Therefore, for such specially chosen jx  and jy   (j = m, n-m) , we have   /( ; ) 0n m

vq u  , 

which, together with ( ; ) 0q u  , implies / /n m n m

u vq q .  This contradicts the original condition 

that / /n m n m

u vq q  for all jx  and jy   (j = m, n-m) such that jy  has more jth-degree risk than jx .  

Therefore, u(x) must be (n/m)th-degree Ross more risk averse than v(x).    

          Q.E.D.  

A similar result holds for /n m

uq as stated in Theorem 6, which can be similarly proved 

following the steps in the proof of Theorem 5.  Just note that Lemma 2 can be extended so that 

“u(x) is both (n/m)th-degree and (n/(n-m))th-degree Ross more risk averse than v(x) on [a, b] if 
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and only if there exist  > 0 and ( )x  with 1 ( )( 1) ( ) 0m m x  , 1 ( )( 1) ( ) 0n m n m x     and 

1 ( )( 1) ( ) 0n n x   for all x in [a, b]  such that ( ) ( ) ( )u x v x x   ”.  

Theorem 6.  / /n m n m

u vq q  for all jx  and jy   (j = m, n-m) such that jy  has more jth-degree risk 

than jx  if and only if u(x) is both (n/m)th-degree and (n/(n-m))th-degree Ross more risk averse 

than v(x). 

 

4.2. Measuring Downside Risk Aversion Using Various Versions of Probability Premiums  

As an interesting special case, consider various versions of probability premiums for 

downside risk aversion in the risk apportionment framework of Eeckhoudt and Schlesinger 

(2006).   

Compare two 50-50 lotteries  ,X w k w   

 

and   ,Y w w k    , where k > 0 and 

  is a nondegenerate zero-mean risk.  Eeckhoudt and Schlesinger (2006) establish that X is 

preferred to Y by u(x), or   

  
1 1 1 1

( ) ( ) ( ) ( )
2 2 2 2

u w k Eu w u w Eu w k        ,   (20) 

for all , ,w k  and   if and only if 0u   .  According to Eeckhoudt and Schlesinger, inequality 

(20) holds because in lottery X, the two “bads” –  (–k) and   – are disaggregated into two 

separate states of nature, whereas in lottery Y, they are combined into a single state of nature.  

Note that Y has more downside risk than X because the pure risk   is placed at w in X and at w-

k in Y.  So inequality (20) is also a statement of downside risk aversion.  

Based on (20), we can naturally define three alternative versions of probability premiums 

for downside risk aversion.  
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Definition 6. The type-i probability premium for downside risk aversion, i

uq , i = I, II or III, is 

defined by the respective equation in the following: 

         

1 1 1 1
( ) ( ) ( ) ( )

2 2 2 2

I I I I

u u u uq u w k q Eu w q u w q Eu w k 
       

                 
       

 (21.1)   

        

1 1 1 1
( ) ( ) ( ) ( )

2 2 2 2

II II II II

u u u uq u w k q Eu w q u w q Eu w k 
       

                 
             

(21.2) 

         

1 1 1 1
( ) ( ) ( ) ( )

2 2 2 2

III III

u uu w k Eu w q u w q Eu w k 
   

           
   

  (21.3) 

Given u(x) with 0u  , " 0u   and 0u   ,  it is easy to see that for all w, k and  , there 

is a unique (0, 1 / 2)i

uq  , i = I, II or III, such that the respective equality holds.  
 

Intuitively, i i

u vq q , i = I, II or III, for all , ,w k  and   can be used to characterize u being 

more downside risk averse than v.  II

uq and III

uq have precedents in the literature.  III

uq  is first 

proposed by Jindapon (2010), and  II

uq  by Watt (2011) as an alternative to III

uq .   Jindapon (2010) 

identifies a sufficient condition for III III

u vq q , but his sufficient condition is not on the utility 

functions alone because it also depends on  .  Watt’s (2011) sufficient condition for II II

u vq q   is 

incomplete for the same reason.    

  By appropriately identifying the terms in (21.1) – (21.3) according to Definitions 4 and 

5, it can be easily seen that I

uq  II

uq and III

uq  are, respectively, 3/1

uq  3/ 2

uq and 3/1

uq .  Then, according 

to Theorems 5 and 6, we immediately obtain the following corollary indicating that various 3rd-

degree Ross more risk aversion conditions are both sufficient and necessary for the interpersonal 

comparison of these alternative probability premiums of downside risk aversion.     

Corollary 1.   
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(i) I I

u vq q  for all , ,w k  and   if and only if u(x) is (3/1)rd-degree Ross more risk averse 

than v(x);  

(ii) II II

u vq q for all , ,w k  and   if and only if u(x) is (3/2)rd-degree Ross more risk averse 

than v(x);  

(iii) III III

u vq q for all , ,w k  and   if and only if u(x) is both (3/1)rd- and (3/2)rd-degree 

Ross more risk averse than v(x). 

  

5. A Comparative Statics Approach 

 The third approach to characterizing (n/m)th-degree Ross more risk aversion comes from 

the comparative statics approach of Jindapon and Neilson (2007).  Suppose that nature rolls the 

dice to reveal two states, with probability p for state 1 and 1 p  for state 2.  Also suppose that 

iw  is the random wealth obtained in state i (i = 1, 2). Ex ante, an individual can expend some 

resource to improve the wealth distribution in each state. The individual optimally allocates a 

given total amount of resource between improving 
1w  and 2w .  Specifically, the individual with 

utility function u(x) solves the following problem 

 

 
   

1 2

1 1 2 2
,

1 2

max ( ) (1 ) ( )

. .

e e
pEu w e p Eu w e

s t e e e

 

 
 (22) 

 

where 1 1( )w e  has less mth-degree risk as e1 increases, and 2 2( )w e  has less nth-degree risk as e2 

increases.  To make this more precise, let Fi(x,ei) be the distribution function for ( )i iw e , with 
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support in [a,b].  Let  
, ( , )
k

i e iF x e  be the partial derivative of  ( , )
k

i iF x e  with respect to ei for k = 

1,2,…  An increase in e1 entails an mth-degree reduction in risk if 
 

1, 1( , ) 0
k

eF b e   for k = 1,2,…,m 

and 
 

1, 1( , ) 0
m

eF x e   for all  ,x a b . An increase in e2 entails an nth-degree reduction in risk if 

 
2, 2( , ) 0

k

eF b e   for k = 1,2,…,n and 
 

2, 2( , ) 0
n

eF x e   for all  ,x a b .  

 Optimization problem (22) can be looked upon as a typical consumer choice problem 

over goods e1 and e2, both of which have a price of unity, or it could be looked at as a typical 

time-allocation or any other fixed resource-allocation problem.  Substituting 2 1e e e   into the 

maximization problem yields 

 

 
1

1 1 1 2 1max ( ) ( ) ( , ) (1 ) ( ) ( , )
b b

a ae
U e p u x dF x e p u x dF x e e       

 

The first-order condition is 

 

 
1 1, 1 2, 1( ) ( ) ( , ) (1 ) ( ) ( , ) 0.

b b

e e
a a

U e p u x dF x e p u x dF x e e         

 

Assume that 1''( ) 0U e   so that the maximization problem has a unique solution, and similarly 

that v’s objective function, V(e1), has 1''( ) 0V e  .  

 We are interested in how individuals with different risk preferences would allocate the 

limited risk-reducing resource differently. The relevant comparative statics result is given in the 

following theorem, which says that a decision-maker will always exert less effort to reduce the 
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mth-degree risk of the random wealth in state 1 and (hence) more effort to reduce the nth-degree 

risk of the random wealth in state 2 than another decision maker if and only if the former is 

(n/m)th-degree Ross more risk averse than the latter.  

Theorem 7.  Suppose that the unique optimal allocation for u(x) is  1 2,u ue e  and the unique 

optimal allocation for v(x) is  1 2,v ve e .  Then 1 1

u ve e  and 2 2

u ve e  if and only if 

u(x) is (n/m)th-degree Ross more risk averse than v(x). 

Proof.     

“if” 

 By Lemma 2 there exists 0   and ( )x  such that ( ) ( ) ( )u x v x x    , where 

1 ( )( 1) ( ) 0m m x   and 1 ( )( 1) ( ) 0n n x   for all x.  Evaluating 1'( )U e  at 1

ve  yields 

 

 

1 1

1

1 1, 1 2, 1

( ) [ ] ( ) [ ]

1, 2,

( ) [ ] ( )

1, 2,

'( ) ( ) ( , ) (1 ) ( ) ( , )

( 1) ( ) ( , ) (1 ) ( 1) ( ) ( , )

( 1) ( ) ( , ) (1 ) ( 1) ( )

b b
v v v

e e
a a

b b
m m m v n n n v

e e
a a

b
m m m v n n

e
a

U e p u x dF x e p u x dF x e e

p u x F x e dx p u x F x e e dx

p v x F x e dx p v x F

   

        
      

     
  

 

 

 

 

1

1 1

1 1

[ ]

( ) [ ] ( ) [ ]

1, 2,

( ) [ ] ( ) [ ]

1, 2,

( , )

( 1) ( ) ( , ) (1 ) ( 1) ( ) ( , )

( 1) ( ) ( , ) (1 ) ( 1) ( ) ( , )

( )

b
n v

e
a

b b
m m m v n n n v

e e
a a

b b
m m m v n n n v

e e
a a

x e e dx

p x F x e dx p x F x e e dx

p v x F x e dx p v x F x e e dx

p v x

 





 
  

        
      

        
      





 

 

 1, 1 2, 1

1

( , ) (1 ) ( ) ( , )

'( ) 0

b b
v v

e e
a a

v

dF x e p v x dF x e e

V e

  

 

 
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where the inequality comes from the fact that ( )( 1) ( ) 0m m x   and ( )( 1) ( ) 0n n x   coupled 

with [ ]

1, ( ) 0m

eF x   and [ ]

2, ( ) 0n

eF x  .  The second-order condition guarantees that 1'( )U e  is 

declining in e1, and therefore 1 1

u ve e . 

“only if” 

 Suppose that 1 1

u ve e   is always the case, but u(x) is NOT (n/m)th-degree Ross more risk 

averse than v(x). Then, according to Lemma 3, there exist 0  , 1 1[ , ] ( , )a b a b  and  

2 2[ , ] ( , )a b a b  such that ( ) ( ) ( )x u x v x    satisfies 

1 ( )

1 1

1 ( )

2 2

( 1) ( ) 0 for all x [ , ]

( 1) ( ) 0 for all x [ , ]

n n

m m

x a b

x a b









  

  
    (23) 

Choose  2 2( , )F x e  and 1 1( , )F x e  such that [ ]

2, 2( , ) 0k

eF b e    for 1,2, ,k n ,  [ ]

1, 1( , ) 0k

eF b e    for 

1,2, ,k m , and   

         

[ ] [ ]

2, 2 1 1 1, 1 2 2

[ ] [ ]

2, 2 1 1 1, 1 2 2

( , ) 0 ( , ) ( , ) 0 ( , )

( , ) 0 ( , ) ( , ) 0 ( , )

n m

e e

n m

e e

F x e x a b F x e x a b

F x e x a b F x e x a b

     
 

    

.     (24) 

 Evaluating 1( )U e  at 1

ve , we have 

1 1 1, 1 2, 1

1, 1 2, 1

( ) [ ] ( ) [ ]

1, 1 2, 1

( )

1

( ) ( ) ( ) ( , ) (1 ) ( ) ( , )

( ) ( , ) (1 ) ( ) ( , )

( 1) ( ) ( , ) (1 ) ( 1) ( ) ( , )

( 1) ( )

b b
v v v v

e e
a a

b b
v v

e e
a a

b b
m m m v n n n v

e e
a a

m m

U e V e p x dF x e p x dF x e e

p x dF x e p x dF x e e

p x F x e dx p x F x e e dx

p x F

  

 

 



     

   

     

 

 

 

 
2 1

2 1

[ ] ( ) [ ]

, 1 2, 1( , ) (1 ) ( 1) ( ) ( , )

0.

b b
m v n n n v

e e
a a

x e dx p x F x e e dx   



 

 

Therefore 1 1

u ve e , a contradiction.  So u(x) must be (n/m)th-degree Ross more risk averse than 

v(x).   
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           Q.E.D. 

 To get an idea of how Theorem 7 matters, consider the case of a manager facing two 

states of the world, bankruptcy and solvency.  The manager can devote time to protecting the 

company’s assets, resulting in an ith-degree improvement in company payoffs if it goes 

bankrupt, or to improving sales, resulting in a jth-degree improvement in profit if the company 

remains solvent.  If i < j, a (j/i)th-degree Ross more risk averse manager will devote more effort 

to improving the performance in the solvency state.  Taking the special case of i = 1 and j = 2, 

the Ross more risk averse manager would devote more time to reducing the variability of profits 

conditional on solvency and less time to improving the mean of payoffs conditional on 

bankruptcy.  This suggests that (n/m)th-degree Ross more risk averse individuals devote more 

energy to tasks to make higher-order distributional improvements (like variance) and less to 

lower-order distributional improvements (like mean), as long as those tasks affect mutually 

exclusive states of the world. 

 

6. Conclusion 

Pratt (1964) proposes two measures of risk aversion, the risk premium (the reduction in 

the nonrandom initial wealth the decision maker is willing to pay to avoid a zero-mean gamble) 

and the probability premium (the probability of winning the positive outcome of a zero-mean 

binary gamble that makes the decision maker indifferent between the gamble and the status quo), 

and shows that interpersonal comparisons of both measures are characterized by the Arrow-Pratt 

more risk aversion.  Since then, the risk premium approach to comparative risk aversion has been 
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generalized to deal with random initial wealth and risk aversion of higher degrees.10  By 

comparison, the probability premium approach to comparative risk aversion has largely been 

abandoned.    

In this paper, Pratt’s original probability premium is reformulated according to the 

following basic idea: the individual makes a decision involving trading in his current wealth 

distribution for a new, state-dependent one.  If event G (good) occurs then an mth-degree risk 

decrease in wealth takes place, but if event B (bad) occurs then an nth-degree risk increase in 

wealth takes place.  The required probability of event G is defined as the mth probability 

premium of nth-degree risk aversion.  It is shown that the interpersonal comparison of the mth 

probability premium of nth-degree risk aversion is characterized by the (n/m)th-degree Ross 

more risk aversion of Liu and Meyer (2013). 

The paper also examines an alternative probability premium approach to comparative risk 

aversion that is based on the risk apportionment of Eeckhoudt and Schlesinger (2006) and 

Eeckhoudt et al. (2009), and shows that the alternative probability premium approach also leads 

to (n/m)th-degree Ross more risk aversion. 

Importantly, the risk premium approach to comparative risk aversion can only lead to the 

notion of (n/1)th-degree Ross more risk aversion.  Since (n/m)th-degree Ross more risk aversion 

includes the (n/1)th-degree Ross more risk aversion as a special case, the probability premium 

approach not only produces alternative measures of nth-degree risk aversion that are 

fundamentally equivalent to the risk premium measures, but also generate additional measures of 

                                                             
10 For example, see Ross (1981), Machina and Neilson (1987), Kimball (1990), Modica and Scarsini (2005), 

Jindapon and Neilson (2007), Crainich and Eeckhoudt (2008), Li (2009), and Denuit and Eeckhoudt (2010). 
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nth-degree risk aversion.  This may prove useful in future investigations of various factors that 

affect the intensity of higher-degree risk aversion. 
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