161 research outputs found
Proteinase-activated receptor-2 modulates human macrophage differentiation andeffector function
Proteinase-activated receptor-2 (PAR-2) was shown to influence immune regulation; however, its role in human macrophage subset development and function has not been addressed. Here, PAR-2 expression and activation was investigated on granulocyte macrophage (GM)-CSF(M1) and macrophage (M)-CSF(M2) macrophages. In both macrophages, the PAR-2-activating peptide, SLIGKV, increased PAR-2 expression and regulated TNF-α and IL-10 secretion in a manner similar to LPS. In addition, HLA-DR on M1 cells also increased. Monocytes matured to an M1 phenotype in the presence of SLIGKV had reduced cell area, and released less TNF-α after LPS challenge compared with vehicle (P < 0.05, n = 3). Cells matured to an M2 phenotype with SLIGKV also had a reduced cell area and made significantly more TNF-α after LPS exposure compared to vehicle (P < 0.05, n = 3) with reduced IL-10 secretion (P < 0.05, n = 3). Thus, PAR-2 activation on macrophage subsets regulates HLA-DR and PAR-2 surface expression, and drives cytokine production. In contrast, PAR-2 activation during M1 or M2 maturation induces altered cell morphology and skewing of phenotype, as evidenced by cytokine secretion. These data suggest a complex role for PAR-2 in macrophage biology and may have implications for macrophage-driven disease in which proteinase-rich environments can influence the immune process directly
Endothelium-derived contraction in a model of rheumatoid arthritis is mediated via angiotensin II type 1 receptors
A role for endothelium-derived constricting factors (EDCF), and the angiotensin II type 1 receptor (AT1R) pathway, in the vascular impairment found in the rat Freund's complete adjuvant (FCA)-model of rheumatoid arthritis (RA) was examined. FCA arthritis was induced in rats±losartan. Vehicle-treated rats served as controls. Knee-joint swelling and red blood cell (RBC) aggregation were measured as indicators of inflammation and endothelium reactivity assessed by response to acetylcholine (ACh) on aortic rings. Results show that knee-joint swelling and RBC aggregation were elevated in the FCA+vehicle group and restored to control levels in the FCA+losartan-treated animals. ACh-induced relaxation of aortic rings taken from FCA+vehicle animals was significantly impaired compared to vehicle-controls and this vasoreactivity was restored to control levels in the FCA+losartan-treated group. Further examination of aorta from the FCA+vehicle animals revealed an EDCF that was reliant on cyclooxygenase-2 (but not cyclooxygenase-1), generation of superoxide anion generation (but not hydrogen peroxide) and activation of thromboxane-prostanoid receptor. Losartan administration in vivo or ex vivo (to aortic rings) prevented the generation of the EDCF. In summary, this is the first evidence of an EDCF in a model of RA and identifies this mechanism as potentially significant in the cardiovascular disorder associated with the disease
Anomaly Detection for Next-Generation Space Launch Ground Operations
NASA is developing new capabilities that will enable future human exploration missions while reducing mission risk and cost. The Fault Detection, Isolation, and Recovery (FDIR) project aims to demonstrate the utility of integrated vehicle health management (IVHM) tools in the domain of ground support equipment (GSE) to be used for the next generation launch vehicles. In addition to demonstrating the utility of IVHM tools for GSE, FDIR aims to mature promising tools for use on future missions and document the level of effort - and hence cost - required to implement an application with each selected tool. One of the FDIR capabilities is anomaly detection, i.e., detecting off-nominal behavior. The tool we selected for this task uses a data-driven approach. Unlike rule-based and model-based systems that require manual extraction of system knowledge, data-driven systems take a radically different approach to reasoning. At the basic level, they start with data that represent nominal functioning of the system and automatically learn expected system behavior. The behavior is encoded in a knowledge base that represents "in-family" system operations. During real-time system monitoring or during post-flight analysis, incoming data is compared to that nominal system operating behavior knowledge base; a distance representing deviation from nominal is computed, providing a measure of how far "out of family" current behavior is. We describe the selected tool for FDIR anomaly detection - Inductive Monitoring System (IMS), how it fits into the FDIR architecture, the operations concept for the GSE anomaly monitoring, and some preliminary results of applying IMS to a Space Shuttle GSE anomaly
Proteinase-activated receptor 2 modulates OA-related pain, cartilage and bone pathology
Objective Proteinase-activated receptor 2 (PAR2) deficiency protects against cartilage degradation in experimental osteoarthritis (OA). The wider impact of this pathway upon OA-associated pathologies such as osteophyte formation and pain is unknown. Herein, we investigated early temporal bone and cartilage changes in experimental OA in order to further elucidate the role of PAR2 in OA pathogenesis.
Methods OA was induced in wild-type (WT) and PAR2-deficient (PAR2−/−) mice by destabilisation of the medial meniscus (DMM). Inflammation, cartilage degradation and bone changes were monitored using histology and microCT. In gene rescue experiments, PAR2−/− mice were intra-articularly injected with human PAR2 (hPAR2)-expressing adenovirus. Dynamic weight bearing was used as a surrogate of OA-related pain.
Results Osteophytes formed within 7 days post-DMM in WT mice but osteosclerosis was only evident from 14 days post induction. Importantly, PAR2 was expressed in the proliferative/hypertrophic chondrocytes present within osteophytes. In PAR2−/− mice, osteophytes developed significantly less frequently but, when present, were smaller and of greater density; no osteosclerosis was observed in these mice up to day 28. The pattern of weight bearing was altered in PAR2−/− mice, suggesting reduced pain perception. The expression of hPAR2 in PAR2−/− mice recapitulated osteophyte formation and cartilage damage similar to that observed in WT mice. However, osteosclerosis was absent, consistent with lack of hPAR2 expression in subchondral bone.
Conclusions This study clearly demonstrates PAR2 plays a critical role, via chondrocytes, in osteophyte development and subchondral bone changes, which occur prior to PAR2-mediated cartilage damage. The latter likely occurs independently of OA-related bone changes
Essential role for proteinase-activated receptor-2 in arthritis
Using physiological, pharmacological, and gene disruption approaches, we demonstrate that proteinase-activated receptor-2 (PAR-2) plays a pivotal role in mediating chronic inflammation. Using an adjuvant monoarthritis model of chronic inflammation, joint swelling was substantially inhibited in PAR-2-deficient mice, being reduced by more than fourfold compared with wild-type mice, with virtually no histological evidence of joint damage. Mice heterozygous for PAR-2 gene disruption showed an intermediate phenotype. PAR-2 expression, normally limited to endothelial cells in small arterioles, was substantially upregulated 2 weeks after induction of inflammation, both in synovium and in other periarticular tissues. PAR-2 agonists showed potent proinflammatory effects as intra-articular injection of ASKH95, a novel synthetic PAR-2 agonist, induced prolonged joint swelling and synovial hyperemia. Given the absence of the chronic inflammatory response in the PAR-2-deficient mice, our findings demonstrate a key role for PAR-2 in mediating chronic inflammation, thereby identifying a novel and important therapeutic target for the management of chronic inflammatory diseases such as rheumatoid arthritis
Recommended from our members
Molecular testing for the clinical diagnosis of fibrolamellar carcinoma.
Fibrolamellar carcinoma has a distinctive morphology and immunophenotype, including cytokeratin 7 and CD68 co-expression. Despite the distinct findings, accurate diagnosis of fibrolamellar carcinoma continues to be a challenge. Recently, fibrolamellar carcinomas were found to harbor a characteristic somatic gene fusion, DNAJB1-PRKACA. A break-apart fluorescence in situ hybridization (FISH) assay was designed to detect this fusion event and to examine its diagnostic performance in a large, multicenter, multinational study. Cases initially classified as fibrolamellar carcinoma based on histological features were reviewed from 124 patients. Upon central review, 104 of the 124 cases were classified histologically as typical of fibrolamellar carcinoma, 12 cases as 'possible fibrolamellar carcinoma' and 8 cases as 'unlikely to be fibrolamellar carcinoma'. PRKACA FISH was positive for rearrangement in 102 of 103 (99%) typical fibrolamellar carcinomas, 9 of 12 'possible fibrolamellar carcinomas' and 0 of 8 cases 'unlikely to be fibrolamellar carcinomas'. Within the morphologically typical group of fibrolamellar carcinomas, two tumors with unusual FISH patterns were also identified. Both cases had the fusion gene DNAJB1-PRKACA, but one also had amplification of the fusion gene and one had heterozygous deletion of the normal PRKACA locus. In addition, 88 conventional hepatocellular carcinomas were evaluated with PRKACA FISH and all were negative. These findings demonstrate that FISH for the PRKACA rearrangement is a clinically useful tool to confirm the diagnosis of fibrolamellar carcinoma, with high sensitivity and specificity. A diagnosis of fibrolamellar carcinoma is more accurate when based on morphology plus confirmatory testing than when based on morphology alone
- …