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Original Article

Proteinase-activated receptor-2
modulates human macrophage
differentiation and effector function

Rachael Steven1, Anne Crilly1, John C Lockhart1,
William R Ferrell2 and Iain B McInnes2

Abstract

Proteinase-activated receptor-2 (PAR-2) was shown to influence immune regulation; however, its role in human macro-

phage subset development and function has not been addressed. Here, PAR-2 expression and activation was investigated

on granulocyte macrophage (GM)-CSF(M1) and macrophage (M)-CSF(M2) macrophages. In both macrophages, the PAR-

2-activating peptide, SLIGKV, increased PAR-2 expression and regulated TNF-a and IL-10 secretion in a manner similar

to LPS. In addition, HLA-DR on M1 cells also increased. Monocytes matured to an M1 phenotype in the presence of

SLIGKV had reduced cell area, and released less TNF-a after LPS challenge compared with vehicle (P< 0.05, n¼ 3). Cells

matured to an M2 phenotype with SLIGKV also had a reduced cell area and made significantly more TNF-a after LPS

exposure compared to vehicle (P< 0.05, n¼ 3) with reduced IL-10 secretion (P< 0.05, n¼ 3). Thus, PAR-2 activation on

macrophage subsets regulates HLA-DR and PAR-2 surface expression, and drives cytokine production. In contrast, PAR-

2 activation during M1 or M2 maturation induces altered cell morphology and skewing of phenotype, as evidenced by

cytokine secretion. These data suggest a complex role for PAR-2 in macrophage biology and may have implications for

macrophage-driven disease in which proteinase-rich environments can influence the immune process directly.
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Introduction

Proteinase-activated receptor-2 (PAR-2) is a G protein-
coupled receptor that possesses its own cryptic ligand
within the receptor N terminus. The activating ligand is
unveiled by proteolytic cleavage, resulting in receptor
activation.1 Among the PAR family (PARs 1–4), PAR-
2 is the only member insensitive to thrombin and is,
instead, activated by a number of serine proteinases.
Many of the identified PAR-2 activators are protein-
ases associated with inflammation and immune cell
activity, including endogenous proteinases secreted by
activated immune cells, for example mast cell tryptase,
trypsin and neutrophil proteinase 3.2 Recently-
described membrane-associated proteinases, such as
matriptase, have also been identified as PAR-2 activa-
tors.3 PAR-2 can also be activated directly by a number
of exogenous pathogen-derived proteinases, such as
gingipains produced by Porphyromonas gingivalis4 and
Der p 3/95 proteinases from dust mite pathogens.

This suggests PAR-2 may have a direct role in the regu-
lation of innate immune function. Critically, PAR-2
represents a mechanism whereby proteinases can dir-
ectly orchestrate and influence cellular responses, and
alter gene expression within evolving innate immune
responses.

Proteinases, including those identified as PAR-2
activators, are found in abundance at sites of inflam-
mation and tissue damage. In particular, the synovial
microenvironment in rheumatoid arthritis (RA) con-
tains an abundance of inflammatory cells that secrete
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PAR-2 activators upon cellular activation and degranu-
lation, including mast cell tryptase6 and neutrophil-
derived proteinase 3.7 In addition, PAR-2 is expressed
in the RA joint, co-localizing with macrophages, fibro-
blasts and mast cells.8,9 We demonstrated previously a
pivotal role for PAR-2 in rodent models of arthritis,
suggesting that such expression has functional signifi-
cance.10–12 Further, we demonstrated the therapeutic
potential of PAR-2 inhibition in ex vivo RA primary
synovial tissue culture, in which we observed reduced
pro-inflammatory cytokine release in the presence of
the specific antagonist, ENMD-1068.8

Macrophages contribute substantially to the cyto-
kines manifested during discrete phases of the inflam-
matory cascade and play a critical role in development
of adaptive immune responses.13,14 Two major subsets
of macrophages are postulated, namely the classically
activated or inflammatory M1 macrophage, associated
with high levels of IL-12 and low IL-10, and the alter-
natively-activated macrophage (M2 type), associated
with a high production of IL-10.15 It is proposed that
human monocytes can be polarised in vitro towards a
predominantly M1 or M2 phenotype with the addition
of granulocyte macrophage (GM)-CSF or macrophage
(M)-CSF respectively.16 PAR-2 mRNA has been iden-
tified previously in human monocytes17 and PAR-2
protein has been detected at low levels on the cell sur-
face. Monocytes also contain intracellular pools of pre-
formed PAR-2 that can be trafficked readily to the cell
surface when required.18 Activation of PAR-2 results in
enhanced secretion of pro-inflammatory cytokines and
chemokines, including IL-1b, IL-6 and IL-8.18 Many of
these, in turn, have been implicated in the pathology of
chronic inflammatory diseases, such as RA.19 In add-
ition, we have shown recently that RA patients having a
disease flare have increased levels of PAR-2 expression
on their PBMC than individuals with stable disease,20

supporting an inflammatory role for this molecule in
the disease.

Functional PAR-2 is required for in vitro develop-
ment of murine bone marrow-derived dendritic cells
(DC). DC generated from PAR-2�/� mice have
reduced expression of co-stimulatory molecules,
CD80 and CD86, than PAR-2 wild type (WT)
mice.21 A similar effect was observed in PAR-2 WT-
derived DC treated with soybean proteinase inhibitors.
These findings suggest PAR-2 may play a role in the
differentiation and maturation of myeloid cells, includ-
ing monocytes and macrophages. However, detailed
analysis of the expression and functional implications
of PAR-2 manipulation upon human macrophage
subset maturation has not been performed. We
hypothesised that PAR-2 manipulation would regulate
macrophage differentiation and maturation pathways,
and could thereby alter macrophage morphology and
phenotype, as well as influencing the effector function
of the cell.

Materials and methods

Human PBMC and CD14+ cell isolation

Human buffy coats were obtained from healthy blood
donors with ethical approval (Scottish National Blood
Transfusion Service, Glasgow, UK). PBMCs were iso-
lated using density gradient centrifugation (Histopaque
1077; Sigma-Aldrich Ltd, Dorset, UK). CD14+ cells
were positively selected using MACS beads, magnet
and filters (Miltenyibiotec, Surrey, UK) as per the
manufacturer’s instructions, with purities routinely
found to be 90–95%. Isolated cells were cultured at
1� 106/ml (2.5ml/well in 6-well plates; Corning,
Sigma Aldrich) in 10% FCS/complete RPMI (supple-
mented with penicillin, streptomysin and L-glutamine;
Life Technologies, Paisley, UK), in the presence of
recombinant human M-CSF 10 ng/ml or GM-CSF
20 ng/ml (Peprotech, London, UK) for 6 d at 37�C/
5% CO2. For the purposes of this article, GM-CSF
and M-CSF matured macrophages are referred to as
M1 and M2 macrophages respectively.16

FACS staining of PBMC and monocyte-derived
macrophages

Following density centrifugation, an aliquot of PBMC
was removed for FACS analysis before application of
CD14 isolation beads. Cells were surface stained for
CD14 phycoerythrin (PE), CD3 FITC, CD19 APC (all
from ebioscience, Hatfield, UK), and PAR-2 FITC or
Alexa Fluor 647 (Santa Cruz Biotechnology,
Heidelberg, Germany). Appropriate isotype controls
were also included. An aliquot of cells was stained for
cell surface markers followed by intracellular staining
for PAR-2 using the BD Cytofix/CytopermTMPlus
Fixation/Permeabilization kit with BD GolgiPlugTM

(BD Bioscience, Abingdon, UK) as per the manufac-
turer’s instructions. Matured macrophages were also
stained for PAR-2, CD163 PE (ebioscience) and CD68
PE (Santa Cruz Biotechnology, Hiedelberg, Germany)
expression. Following SLIGKV (SLIGKV-NH2;
Polypeptide Group, Strasbourg, France) stimulation,
matured macrophages were stained for surface expres-
sion of TLR2 (CD282) FITC, TLR4 (CD284) PE and
HLA-DR FITC (all from ebioscience). At least 10,000
events were collected using a FACSCalibur (BD
Bioscience, Oxford, UK) and data were analysed using
FlowJo 7.6.1 (Tree Star, Ashland, OR, USA).

Immunohistochemistry and cell area determination

CD14+ cells were isolated as described above and
re-suspended at 1� 106/ml in complete RPMI. Cells
were plated into 4-well chamber slides (Fischer UK,
Loughborough, UK) in the presence of M-CSF or
GM-CSF growth factors alone or growth factor plus
SLIGKV for 6 d. Cells were fixed in methanol for
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20min and blocked in 3% hydrogen peroxide (Sigma
Aldrich) for 30min, followed by dehydration through
graded alcohols. The cells were then stained using the
PAR-2 Ab, SAM-11 or isotype control (Santa Cruz
Biotechnology) for 1 h at room temperature in a humi-
dified container and then counterstained with haemo-
toxylin (Sigma Aldrich) before rehydration through
graded alcohols and mounted for microscopy. Once
mounted, cell area (mm2) was determined using Zeiss
Axiovision LE software (4.8). Fifty cells were measured
for each condition (M-CSF+vehicle, M-CSF+
SLIGKV, and similarly for GM-CSF) in three donors.

SLIGKV stimulations of human monocyte-derived
macrophages

PAR-2 agonist SLIGKV was prepared in complete
RPMI as described above. Following culture for 6 d,
monocyte-derived macrophages were stimulated with
400 mM SLIGKV or media alone for 24 h. Cells were
then removed for FACS analysis of TLR2, TLR4,
HLA-DR and PAR-2 surface expression.

Cytokine analysis from GM-CSF and M-CSF matured
macrophages

CD14+ cells were differentiated in GM-CSF (M1) or
M-CSF (M2) for 6 d. Differentiated cells were then
stimulated with LPS (100 ng/ml; Sigma, UK) or
SLIGKV (400mM) for 48 h and culture supernatants
collected for cytokine analysis. In a subset of experi-
ments, cells were differentiated in the presence or
absence of SLIGKV (400 mM) or an equivalent concen-
tration of a control reverse peptide (RP; TOCRIS
Bioscience, Bristol, UK) for 6 d prior to stimulating
with LPS (100 ng/ml; Sigma) for 48 h, after which cul-
ture supernatants were collected for cytokine analysis.

TNF-a and IL-10 levels were measured in culture
supernatants by ELISA (Life Technologies) as per the
manufacturer’s instructions.

Statistical analysis

Statistics were analysed by Student’s t-test or by one- or
two-way ANOVA with post hoc Student–Newman–
Keuls test or Bonferroni correction. Log10 transform-
ation was performed on non-normally distributed data
where necessary to permit parametric analysis. Data are
presented as mean� SEM.

Results

PAR-2 expression in human PBMC

Cells freshly isolated from human buffy coats were
analysed for surface membrane and intracellular

PAR-2 expression. Whereas most CD14+, CD3+ and
CD19+ cells exhibited only low levels of surface expres-
sion (13.8� 7.5%, 3.3� 2.0% and 4.6� 2.8%, n¼ 5),
commensurate with previous reports,17,18 substantial
intracellular PAR-2 expression was observed in a
majority of cell subsets (93.1� 2.0%, 84.1� 5.3% and
89.5� 3.8%, respectively, P< 0.001, n¼ 5). No signifi-
cant difference in PAR-2 expression was observed
between populations of cells (Figure 1A).

Characterisation of macrophage subsets

After 6 d, the phenotype of M1- and M2-differentiated
monocytes was evaluated by FACS analysis and
signature cytokine profiles. Cells polarised to an M2
phenotype had significantly higher expression of
CD163 than M1 cells, in which expression was minimal
(Figure 1B), indicating an M2 phenotype.16,22

HLA-DR expression was also significantly elevated in
the M2 matured cells than in M1 cells (Figure 1C).
PAR-2 surface expression and intracellular expression
was maintained during macrophage differentiation in
both M1 and M2 macrophage subsets (Figure 1D).
Both M1 and M2 cells expressed CD68, with no signifi-
cant difference found between the two populations
(58� 8.4% vs 69.8� 5.2%, respectively, n¼ 11).
TLR4 expression was consistent in M1 and M2 cell
(58.6� 9.7% vs 57.4� 12.1%, respectively, n¼ 8), and
while there was a trend toward enhanced TLR2 expres-
sion in M1 cells compared with M2 cells (51� 11% vs.
41� 11, respectively, n¼ 8), this did not reach
significance.

After exposure to LPS, M1 macrophages made sig-
nificantly more TNF-a and reduced IL-10 compared
to M2 macrophages (Figure 2A, B). These observa-
tions suggested the functional integrity of M1 and
M2 phenotypes generated in our cell systems. In add-
ition, this cytokine signature profile was similarly
driven by the PAR-2-activating peptide, SLIGKV, in
macrophage subsets (Figure 2C, D). These data dem-
onstrate direct regulation of M1 or M2 effector func-
tion by a PAR-2 activator that can operate in a
similar manner to that mediated via TLR4 agonist
activation.

PAR-2 regulation of cell surface markers on M1
macrophages

Exposure of M1 cells to the PAR-2 activator, SLIGKV,
for 24 h further enhanced expression of PAR-2 and
HLA-DR (Figure 3A–C). We also measured marginal
increased expression of both TLR4 (59� 10% vs
68� 7%, M1 vs M1+SLIGKV, respectively, n¼ 8)
and TLR2 (51� 11% vs 58� 9%, M1 vs M1+
SLIGKV, respectively, n¼ 8), suggesting that the
expression of these innate receptors was at least
maintained.
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Influence of PAR-2 activation on M1 macrophage
differentiation and effector function

Cells polarised to an M1 phenotype in the presence of
GM-CSF plus SLIGKV for 6 d stained abundantly for
PAR-2 (Figure 4A). In the presence of SLIGKV, cells
were found to have an altered cellular morphology,
appearing spindle-like and elongated (Figure 4A).
This was further quantified by measurement of cell
area. Statistically significant differences in cell area
(P< 0.0001, Bonferroni t-test) were found between
vehicle (M1 vehicle) and SLIGKV-treated cells
(Figure 4B). Interestingly, M1 macrophages matured
in the presence of SLIGKV made reduced levels of
TNF-a than control M1 cells (GM-CSF or GM-
CSF+RP) when exposed to LPS (Figure 4C), suggest-
ing a skewing of the cell phenotype. Levels of IL-10
were not altered significantly (Figure 4D).

PAR-2 regulation of cell surface markers on M2
macrophages

M2 macrophages exposed to SLIGKV for 24 h exhib-
ited enhanced surface expression of PAR-2 when com-
pared to vehicle-treated cells, suggesting autocrine
regulation (Figure 5A, B), and a modest, but

significant, reduction in HLA-DR expression
(Figure 5C). No significant change in TLR2
(41� 11% vs 46� 6.3%, M2 vs M2+SLIGKV,
respectively, n¼ 8) or TLR4 (57� 12% vs 73� 6.4%,
M2 vs M2+SLIGKV, respectively, n¼ 8) expression
was observed in these cells.

Influence of PAR-2 activation on M2 differentiation
and effector function

Cells polarised to an M2 phenotype in the presence of
M-CSF� SLIGKV for 6 d were found to stain abun-
dantly for PAR-2 (Figure 6A). In the presence of
SLIGKV, cells displayed altered morphology
(Figure 6A), with a significant difference in cell area
observed (P< 0.0001, Bonferroni t-test; Figure 6B). In
addition, M-CSF+SLIGKV-matured macrophages
were found to make significantly more TNF-a than
M2 cells after exposure to LPS (Figure 6C). Altered
TNF-a secretion was paralleled by a significant reduc-
tion in IL-10 release with SLIGKV, but not in the pres-
ence of control reverse peptide (Figure 6D). This
observation would suggest that PAR-2 activation in
the presence of M-CSF alters the M2 phenotype
towards an M1-like profile.
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Discussion

Within the context of PAR-2 biology, detailed analysis
of this receptor in human macrophage subset develop-
ment and function has not been undertaken previously.
The present study is the first to demonstrate a function-
ally relevant role for PAR-2 in human macrophage
development and subset effector function. While
PAR-2 surface expression on M1- and M2-matured
macrophages has been reported previously,17,18 the
functional consequence of PAR-2 activation on
human M1 and M2 subsets has not been explored.
To address this directly, we investigated whether
PAR-2 activation could regulate expression of surface
molecules involved in cellular activation and antigen
presentation. Our data suggest that PAR-2 expression
on M1 macrophages can be up-regulated using
the PAR-2-activating peptide, SLIGKV, possibly
through mobilisation of intracellular pools to the cellu-
lar surface. PAR-2 cannot be recycled to the cell surface
once internalised, and so is targeted to lysosomes
for degradation.23 Re-sensitisation is therefore depend-
ent on trafficking of pre-formed receptor from

cytoplasmic stores and our data suggest that once
PAR-2 activation has occurred, surface expression is
further up-regulated.

PAR-2 activation of M1 macrophages resulted in
significant up-regulation of HLA-DR, an antigen-
presenting molecule associated with chronic inflamma-
tory disease-associated pathology, exemplified in RA.24

In contrast, PAR-2 activation in M2 macrophages led
to significant down-regulation of HLA-DR expression.
Similar observations have been reported in M2 macro-
phages post-stimulation with LPS.22 This would sug-
gest that in mature macrophages, in which cellular
phenotype has been established, PAR-2 activation will
enhance the characteristics of that phenotype—be that
inflammatory or anti-inflammatory—and may
explain the divergent roles that have been attributed
to PAR-2.2

While not attaining significance, there was a trend to
enhanced TLR4 expression in both M1 and M2 macro-
phages following SLIGKV stimulation. A similar result
has been reported for M2 macrophages stimulated with
LPS.22 Physical and functional interactions between

(A) (B)

(C) (D)

12000
3000

2500

2000

1500

1000

500

0

10000

Basal

LPS

Basal

LPS

Basal

SLIGKV

Basal

SLIGKV

8000

6000

4000

2000

0

12000

10000

8000

6000

4000

2000

0

GM-CSF GM-CSF

∗∗∗

∗∗

M-CSF

GM-CSF M-CSF

M-CSF

T
N

F
-α

 (
pg

/m
l)

T
N

F
-α

 (
pg

/m
l)

IL
-1

0 
(p

g/
m

l)

1000

800

600

400

200

0

GM-CSF

∗∗∗∗∗∗

M-CSF

IL
-1

0 
(p

g/
m

l)
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PAR-2 and TLR4 have been described previously.25 It
is possible that in innate cell types, such as macro-
phages, PAR-2 may act as a danger or damage-sensing
receptor, similar to pathogen associated molecular pat-
terns, or danger-associated molecular pattern sensors,
such as the TLRs.26 Alternatively, it may act to modu-
late such responses in the context of tissue damage.
Proteinases are generated in response to inflammation
and are found abundantly at sites of tissue damage;
therefore, it is likely that PAR-2 may act to sustain
inflammatory responses under these conditions.
A number of endogenous molecules have been identi-
fied as TLR activators, including heat shock proteins
and nuclear material.27 These endogenous molecules,
along with proteinases, are likely to be in high concen-
tration at sites of tissue pathology, such as in the RA
joint. PAR-2-mediated up-regulation of HLA-DR may
promote macrophage-mediated antigen presentation to
T cells. Although macrophages are generally unable to
induce naı̈ve T cell activation, macrophage cellular
interactions and mediators are critical in sustaining an

inflammatory environment and adaptive cell activation
status. Macrophages and T cells are found co-localised
within the rheumatoid synovium, and this cellular inter-
action is thought to be pivotal in RA pathology.28 It is
possible that the pro-inflammatory environment of the
RA joint surface enhances PAR-2 expression in T cells,
and, in the context of a proteinase-rich environment,
this leads to a reduced signalling threshold for T cell
activation. Likewise, PAR-2-activating proteinases in
the RA joint may lead to amplification of HLA-DR
and TLR expression, both of which are known to be
enhanced in patients with RA.29,30 This represents a
possible mechanism whereby PAR-2 may contribute
to activation of innate and adaptive immunity leading
to breach of peripheral tolerance, and contributing to
autoimmune and chronic inflammatory diseases, such
as RA.

Activation of PAR-2 using the activating peptide
SLIGKV resulted in the generation of signature cyto-
kines from both M1- (high TNF-a, low IL-10) and
M2-matured macrophages (low TNF-a, high IL-10).
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While similar observations have been reported previ-
ously for macrophage subsets activated with LPS,22

this is the first report of regulation of M1 and M2
signature cytokine secretion via PAR-2 activation. In
the mouse it has been reported recently that PAR-2
activation promotes an anti-inflammatory, alterna-
tively-activated (or M2) phenotype in thioglycollate-
derived macrophages stimulated with LPS.31 It is of
note, however, that macrophages collected from thio-
glycollate-induced peritonitis have reduced class II
expression, a decreased capacity to support T cell
proliferation and make reduced levels of pro-inflam-
matory cytokines in response to LPS when compared
with macrophages derived from an antigen-specific
model.32 These observations would suggest that thio-
glycollate macrophages may, in fact, have a less
inflammatory phenotype to begin with, making
them biased or more susceptible to alternative activa-
tion. While our data cannot be compared directly to
the murine studies of Nhu et al.,31 both provide evi-
dence that PAR-2 is capable of inducing an anti-
inflammatory phenotype. In addition to this, our
data show that PAR-2 activation can drive the

effector function of both M1 and M2 macrophages,
not only through regulation of surface molecules, but
through cytokine secretion. We would postulate that
in M1-matured cells, PAR-2 may have a role in
enhancing inflammation, whereas in M2-matured
cells PAR-2 may have a more homeostatic role.
This dual effect of PAR-2 has been previously
reported in murine disease models, with PAR-2
having a protective effect in some disease models,
such as allergy and colitis.33–35 Other disease models
identify PAR-2 as having a pro-inflammatory effect,
including arthritis, encephalitis and dermatitis.11,36–38

Again, this supports the hypothesis PAR-2 has differ-
ential effects and functions depending on cell type,
environment and polarisation.

It has been documented that human peripheral
blood monocytes express low levels of surface PAR-
2,18 which we confirmed in our study. Interestingly,
cell subsets expressed substantial intracellular PAR-2.
These intracellular stores have been determined previ-
ously as a pool of pre-formed receptor, which can be
trafficked rapidly to the cell surface, and, once on
the cell surface, PAR-2 can mediate release of
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inflammatory cytokines.18 Despite this knowledge, the
role of PAR-2 during maturation and differentiation to
a macrophage subset is not clear for human cells. This
is in contrast to murine studies in which a role for
PAR-2 in cellular development of murine bone
marrow-derived DC has been described previously.21

Macrophages, DC and osteoclasts are derived from a
common precursor, the CD14+ monocyte. PAR-2 has
been identified in human osteoclasts, with data suggest-
ing it may be important in cellular regulation.39 Human
DC do not appear to express surface PAR-2 in a non-
stimulated state;17,18 however, it is possible that PAR-2
may be up-regulated when DC are cultured in a pro-
inflammatory environment. Here, we have investigated
the role of PAR-2 in development of monocytes to
mature macrophages. Both M1 and M2 macrophages
stained abundantly for PAR-2 by immunohistochemis-
try, with both cell types displaying typical macrophage
morphology, with enhanced cytoplasm. However, when
cultured in the presence of SLIGKV, morphology
appeared altered, with both cell types displaying an
elongated and spindle-like appearance. This suggests
that PAR-2 may be involved in cytoskeletal rearrange-
ment during macrophage maturation, resulting in the

altered and ‘stretched’ appearance of the cells when
exposed to a PAR-2 agonist, which was also reflected
in altered cell area compared with vehicle treatment.
Interestingly, monocytes polarised towards an M1
phenotype in the presence of the PAR-2-activating pep-
tide, SLIGKV, made significantly less TNF-a after
challenge with LPS than M1 cells polarised with GM-
CSF alone. In addition, these cells made more IL-10
than M1 cells, although this failed to reach significance.
Contrastingly, cells polarised towards an M2 pheno-
type in the presence of SLIGKV made significantly
more TNF-a with abrogation of IL-10 secretion when
compared with control M2-matured macrophages post-
LPS challenge. A role for PAR-2 in mouse macrophage
phenotype development has been demonstrated using
thioglycollate-derived macrophages from PAR-2�/�

mice.31 While this model is GM-CSF independent,40 it
appears that in the absence of PAR-2 thioglycollate
induces a peritonitis characterised by macrophages
that have a more inflammatory phenotype, as assessed
by their cytokine profile post-stimulation with LPS.
While it is difficult to make a direct comparison
between our findings and those reported by Nhu
et al.31 in the mouse, we would suggest that both studies
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highlight a definitive role for PAR-2 in influencing
macrophage subset development.

Historically, M2 macrophages have been referred to
as inflammation resolving cell. Contrastingly, the M1
macrophage has an inflammatory phenotype with pro-
duction of inflammatory type cytokines and an ability
to support Th1 and Th17 adaptive immunity.16,41 Our
data would suggest that PAR-2 activation during
macrophage subset differentiation can skew the cell
phenotype and, thus, its effector function.

In conclusion, this study identifies a complex role for
PAR-2 in innate immunity. Our study highlights PAR-
2 as a key regulator of macrophage differentiation and
effector function. These observations may be particu-
larly relevant to macrophage-driven diseases in which
PARs, acting as molecular sensors in proteinase-rich
microenvironments, have the potential to dictate the
type of innate response. We would suggest that as a
pivotal receptor molecule in innate immune response,
PAR-2 may offer an attractive therapeutic target for
macrophage-driven disease.
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