40 research outputs found

    Skylab D024 thermal control coatings and polymeric films experiment

    Get PDF
    The Skylab D024 Thermal Control Coatings and Polymeric Films Experiment was designed to determine the effects of the external Skylab space environment on the performance and properties of a wide variety of selected thermal control coatings and polymeric films. Three duplicate sets of thermal control coatings and polymeric films were exposed to the Skylab space environment for varying periods of time during the mission. The specimens were retrieved by the astronauts during extravehicular activities (EVA) and placed in hermetically sealed return containers, recovered, and returned to the Wright Laboratory/Materials Laboratory/WPAFB, Ohio for analysis and evaluation. Postflight analysis of the three sets of recovered thermal control coatings indicated that measured changes in specimen thermo-optical properties were due to a combination of excessive contamination and solar degradation of the contaminant layer. The degree of degradation experienced over-rode, obscured, and compromised the measurement of the degradation of the substrate coatings themselves. Results of the analysis of the effects of exposure on the polymeric films and the contamination observed are also presented. The D024 results were used in the design of the LDEF M0003-5 Thermal Control Materials Experiment. The results are presented here to call to the attention of the many other LDEF experimenters the wealth of directly related, low earth orbit, space environmental exposure data that is available from the ten or more separate experiments that were conducted during the Skylab mission. Results of these experiments offer data on the results of low altitude space exposure on materials recovered from space with exposure longer than typical STS experiments for comparison with the LDEF results

    Bottom-Up Organizing with Tools from On High: Understanding the Data Practices of Labor Organizers

    Get PDF
    This paper provides insight into the use of data tools in the American labor movement by analyzing the practices of staff employed by unions to organize alongside union members. We interviewed 23 field-level staff organizers about how they use data tools to evaluate membership. We find that organizers work around and outside of these tools to develop access to data for union members and calibrate data representations to meet local needs. Organizers mediate between local and central versions of the data, and draw on their contextual knowledge to challenge campaign strategy. We argue that networked data tools can compound field organizers' lack of discretion, making it more difficult for unions to assess and act on the will of union membership. We show how the use of networked data tools can lead to less accurate data, and discuss how bottom-up approaches to data gathering can support more accurate membership assessments

    Solution-Phase Mechanistic Study and Solid-State Structure of a Tris(bipyridinium radical cation) Inclusion Complex

    Full text link

    An Interconverting Family of Coordination Cages and a meso-Helicate; Effects of Temperature, Concentration, and Solvent on the Product Distribution of a Self-Assembly Process

    Get PDF
    The self-assembly between a water-soluble bis-bidentate ligand L<sup>18w</sup> and Co­(II) salts in water affords three high-spin Co­(II) products: a dinuclear <i>meso</i>-helicate [Co<sub>2</sub>(L<sup>18w</sup>)<sub>3</sub>]­X<sub>4</sub>; a tetrahedral cage [Co<sub>4</sub>(L<sup>18w</sup>)<sub>6</sub>]­X<sub>8</sub>; and a dodecanuclear truncated-tetrahedral cage [Co<sub>12</sub>(L<sup>18w</sup>)<sub>18</sub>]­X<sub>24</sub> (X = BF<sub>4</sub> or ClO<sub>4</sub>). All three products were crystallized under different conditions and structurally characterized. In [Co<sub>2</sub>(L<sup>18w</sup>)<sub>3</sub>]­X<sub>4</sub> all three bridging ligands span a pair of metal ions; in the two larger products, there is a metal ion at each vertex of the Co<sub>4</sub> or Co<sub>12</sub> polyhedral cage array with a bridging ligand spanning a pair of metal ions along every edge. All three structural types are known: what is unusual here is the presence of all three from the same reaction. The assemblies <b>Co</b><sub><b>2</b></sub>, <b>Co</b><sub><b>4</b></sub>, and <b>Co</b><sub><b>12</b></sub> are in slow equilibrium (hours/days) in aqueous solution, and this can be conveniently monitored by <sup>1</sup>H NMR spectroscopy because (i) the paramagnetism of Co­(II) disperses the signals over a range of ca. 200 ppm and (ii) the different symmetries of the three species give characteristically different numbers of independent <sup>1</sup>H NMR signals, which makes identification easy. From temperature- and concentration-dependent <sup>1</sup>H NMR studies it is clear that increasing temperature and increasing dilution favors fragmentation to give a larger proportion of the smaller assemblies for entropic reasons. High concentrations and low temperature favor the larger assembly despite the unfavorable entropic and electrostatic factors associated with its formation. We suggest that this arises from the hydrophobic effect: reorganization of several smaller complexes into one larger one results in a smaller proportion of the hydrophobic ligand surface being exposed to water, with a larger proportion of the ligand surface protected in the interior of the assembly. In agreement with this, <sup>1</sup>H NMR spectra in a nonaqueous solvent (MeNO<sub>2</sub>) show formation of only [Co<sub>2</sub>(L<sup>18w</sup>)<sub>3</sub>]­X<sub>4</sub> because the driving force for reorganization into larger assemblies is now absent. Thus, we can identify the contributions of temperature, concentration, and solvent on the result of the metal/ligand self-assembly process and have determined the speciation behavior of the <b>Co</b><sub><b>2</b></sub>/<b>Co</b><sub><b>4</b></sub>/<b>Co</b><sub><b>12</b></sub> system in aqueous solution

    Enantioselective component selection in multicomponent supramolecular gels

    Get PDF
    We investigate a two-component acid-amine gelation system in which chirality plays a vital role. A carboxylic acid based on a second generation l-lysine dendron interacts with chiral amines and subsequently assembles into supramolecular gel fibers. The chirality of the amine controls the assembly of the resulting diastereomeric complexes, even if this chirality is relatively "poor quality". Importantly, the selective incorporation of one enantiomer of an amine over the other into the gel network has been demonstrated, with the R amine that forms complexes which assemble into the most stable gel being primarily selected for incorporation. Thermodynamic control has been proven by forming a gel exclusively with an S amine, allowing the R enantiomer to diffuse through the gel network, and displacing it from the "solidlike" fibers, demonstrating that these gels adapt and evolve in response to chemical stimuli to which they are exposed. Excess amine, which remains unincorporated within the solidlike gel fiber network, can diffuse out and be reacted with an isocyanate, allowing us to quantify the enantioselectivity of component selection but also demonstrating how gels can act as selective reservoirs of potential reagents, releasing them on demand to undergo further reactions; hence, component-selective gel assembly can be coupled with controlled reactivity

    Ice hockey injuries

    No full text
    corecore