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Enantioselective Component Selection in Multi-Component
Supramolecular Gels
William Edwards® and David K. Smith**

* Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK. Fax: +44 (0)1904 324516 E-
mail:david.smith@york.ac.uk

ABSTRACT: We investigate a two-component acid-amine gelation system in which chirality plays a vital role. A carboxylic acid
based on a second generation L-lysine dendron interacts with chiral amines and subsequently assembles into supramolecular gel
fibers. The chirality of the amine controls the assembly of the resulting diastereomeric complexes, even if this chirality is relative-
ly ‘poor quality’. Importantly, the selective incorporation of one enantiomer of an amine over the other into the gel network has
been demonstrated, with the R amine that forms complexes which assemble into the most stable gel being primarily selected for
incorporation. Thermodynamic control has been proven by forming a gel exclusively with an S amine, then allowing the R enanti-
omer to diffuse through the gel network, displacing it from the solid-like fibers, demonstrating these gels adapt and evolve in re-
sponse to chemical stimuli to which they are exposed. Excess amine, which remains unincorporated within the ‘solid-like’ gel fiber
network, can diffuse out and be reacted with an isocyanate, allowing us to quantify the enantioselectivity of component selection,
but also demonstrating how gels can act as selective reservoirs of potential reagents, releasing them on demand to undergo further

reactions — hence component-selective gel assembly can be coupled with controlled reactivity.

Introduction

Supramolecular gels are soft materials with self-assembled
nanoscale fibrillar architectures which are being explored for a
wide range of different applications — from formulation sci-
ence through to high-tech multi-functional materials." Recent-
ly there has been particular focus on multi-component gels, in
which several different molecular-scale building blocks partic-
ipate in gel formation.” These gels often rely on a complex
forming between different components before gelation can
take place.’” In multi-component gels, complex/gelator for-
mation and/or fibre self-assembly can sometimes drive a
‘component selection’ event. When this occurs, certain mole-
cules are selected from a mixture because their favoured self-
assembly thermodynamically drives the evolution of the
mixed molecular library.4 Furthermore, gelators programmed
with different molecular-scale information, may be able to
independently self-sort into their own nanoscale networks.’
Understanding how self-assembly operates within complex
systems such as these is of fundamental importance in under-
standing how non-covalent chemistry can effectively program
the emergence of order from chaos.® Furthermore, these com-
plex, yet well-organised, multi-component gels are particularly
interesting, because the presence of multiple molecular-scale
species offers the possibility of introducing multi-functionality
to these materials.

Chiral gels have been of particular interest, as the chiral in-
formation programmed in at the molecular-scale can be trans-
lated through to the nanoscale assembly of chiral architectures,
and ultimately have an impact on the macroscopic perfor-
mance of the gel.7 There have been a number of studies in
which mixtures of enantiomers have been investigated, and in
general terms, mixing enantiomeric gelators suppresses gela-

tion.® In some cases, if homochiral recognition is preferred the
enantiomers can self-sort to form their own chirally sorted
nanostructures.” In rare cases, the two enantiomers interact
preferentially with each other to form a complex which is an
even better gelator than either individual enantiomer.”’ In
general terms, however, rules about chiral selectivity in gela-
tion are still emerging. It has been demonstrated, for example
that enantiopure gelators can express their chiral assembly
preferences on an achiral analogue in a ‘sergeants and sol-
diers’ type manner." An achiral gelator has even been shown
to undergo a mirror symmetry breaking event on gelation lead-
ing to spontaneous amplification of chirality.12 Furthermore,
there have been several reports in which chiral gels respond in
an enantioselective manner to chiral analytes (and solvents)
with changes in properties signalling the recognition event."
There have also been several examples in which a chiral com-
pound can be induced to form a gel if it complexes with one
guest enantiomer but a precipitate when bound to the other."*
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Fig. 1. Chiral gelation system of G2-Lys and C6R/S.

We have recently been working on a simple, and highly effec-
tive organogelation system comprised of two components (e.g.



Fig. 1) in a 1:1 ratio; (i) a chiral second generation dendron
based on L-lysine (G2-Lys) with a carboxylic acid at the focal
point, and (ii) a primary amine.”” These two soluble compo-
nents can form instant gels on mixing, and we recently
demonstrated how G2-Lys, if challenged with mixture of dif-
ferent amines, would select those which had the highest pKa
values and/or which formed the complexes best able to self-
assemble into nanoscale fibers. These systems were shown to
be adaptive and responsive to chemical stimuli. We therefore
reasoned that if chiral G2-Lys was challenged with enantio-
meric amines, we may observe interesting enantioselective
uptake effects. This would potentially leave one enantiomer
unincorporated within the gel and available for further reac-
tion, enabling gel-mediated enantioselective derivatization.

Results and Discussion
Gelation with Different Enantiomers

In our previous work, " hexylamine was one of the most effec-
tive amines for inducing gelation, and we therefore chose chi-
ral amines C6R/S to study enantioselection. Compound G2-
Lys was tested with each enantiomer individually in a 1:1
mixture (both 10 mM) in toluene (0.5 mL). For reproducibil-
ity of mixing kinetics, all gels formed in this paper were made
using a heat-cool cycle. Both enantiomers were able to induce
gelation when mixed with G2-Lys. Interestingly, however, the
enantiomers produced gels with markedly different T, val-
ues.'® The gel formed with C6R was more thermally stable
(80°C) than that formed with C6S (67°C), an intriguing result,
given that in this complex (mass of over 900 Da), the orienta-
tion of just one methyl group has such a pronounced effect on
gel stability — a significant impact of relatively low quality
chiral information upon the assembly of these complexes.
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Fig, 2. CD spectra of G2-Lys in the presence of C6R and C6S, in
methylcyclohexane/dioxane (95:5).

Mixtures of G2-Lys with each enantiomer were investigated
using circular dichroism (CD) spectroscopy in a 95:5 mixture
of methylcyclohexane/dioxane (Fig. 2) — the thermal charac-
teristics of the gels in this solvent mix were analogous to those
in toluene. The CD spectrum recorded for G2-Lys with C6R
shows a negative Cotton effect band, while that made with
C6S produces a different spectrum, with a simpler, less in-
tense, broad negative CD band. The peak maximum at 220 nm
corresponds to absorbance of the peptides within G2-Lys —
hydrogen bond interactions between these groups are primari-
ly responsible for gel fibre assembly here.'” Tt should be noted

that although C6R and C6S are enantiomeric, they produce
gels with a diastereomeric relationship, because G2-Lys has
the same chirality in each complex. CD clearly demonstrates
different chiral organization which — as expected for diastere-
omeric samples — are not mirror images. Interestingly, the CD
signature with C6R is similar to that previously observed with
hexylamine (which formed good gels),"” whereas the CD sig-
nature with C6S is similar to that previously observed with
octylamine (which formed less effective gels).”” This there-
fore suggests that the nanoscale chiral organisation of G2-Lys
can be optimised with C6R (and hexylamine) but not with
C6S (and octylamine).

To gain further insight into the structure of the gels formed
with the different amine enantiomers, dried xerogels were
formed under ambient conditions and analysed by FEG-SEM
and TEM. The images produced (see supp. info.) indicated
that the different amine chiralities gave rise to quite different
nanoscale morphologies — with C6R giving rise to very small
diameter poorly defined fibres, and C6S yielding significantly
larger and better defined nanofibers. The smaller fibres asso-
ciated with C6R will constitute a network with a larger num-
ber of contact points and greater degree of entanglement, sup-
portive of the higher T, value."® Crucially, the different mor-
phologies, must result from differing amine chirality leading
to diastereomeric complexes with differing assembly modes.

Gelation using Mixtures of Enantiomeric Amines
in Overall 1:1 Stoichiometry with G2-Lys

We then went on to explore how gels made with mixtures of
enantiomeric amines would behave, and how the ratio of C6R
to C6S would control this. In all of these initial experiments,
the concentration of G2-Lys was held at 10 mM and the total
amine concentration was also 10 mM (i.e. one stoichiometric
equivalent). This ensures that all of the amine should be
bound by G2-Lys in these experiments.

A series of gels with a 1:1 mix of G2-Lys (10 mM) and vary-
ing ratios of C6R/S (10 mM in total) were formed and their
Ty values measured. Overall the T, values show that the
thermal stability decreases as an increasing amount of C6S is
present and incorporated into the network (Fig. 3A). It takes
ca. 20% of C6S before the gel is significantly disrupted and
stability starts decreasing. Similarly it takes ca. 20% of C6R
being incorporated into the gel network before the thermal
stability of the gel increases. It therefore appears that the com-
plex present in the majority can direct the thermal stability of
the gel. To investigate whether this change in thermal stability
was linked to a change in chiral organization, the same mix-
tures of G2-Lys with varying ratios of C6R and C6S were
analysed by CD spectroscopy in 95:5 methylcyclohex-
ane:dioxane. Surprisingly, the spectra from samples with from
0% to 90% C6S are very similar. Only when the sample is
made with entirely C6S did we see a significant change in the
CD spectrum (Fig. 3B).

We propose that the reason for the different responses of
thermal stability (macroscopic) and CD intensity (nanoscale
chirality) lies in the fact that the thermal stability depends on
the packing of the whole acid-amine complex, whereas the CD
signal corresponds specifically only to the G2-Lys component.
The presence of the ‘wrong’ amine therefore impacts on the
thermal stability, because this depends on the overall packing
of the complex. However, the CD only directly reports on the
chiral nano-environment experienced by G2-Lys and would
suggest that C6S can only change the chiral environment ex-



perienced by G2-Lys when it is present in very large amounts.
This indicates that G2-Lys is better suited to achieve its opti-
mal nanoscale chiral assembly mode with C6R rather than
with C6S. As such, the assembly of the two-component com-
plex into the gel (7)) and the chiral nano-environment experi-
enced by G2-Lys (CD) and are not directly correlated. Simi-
lar non-correlations have been observed before by Maitra and
co-workers'’ highlighting the complex and hierarchical nature
of gel formation.
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Fig. 3. A: Effect of mixing enantiomers on macroscopic thermal
stability of the gel. [G2Lys] = 10 mM, [C6R] + [C6S] = 10 mM.
B: Effect of mixing enantiomers on the nanoscale chiral organisa-
tion of the gel as recorded in the CD spectrum [G2Lys] = 0.625
mM, [C6R] + [C6S] = 0.625 mM..

We wanted to confirm whether these mixtures produced a
single network (a co-assembly) made with G2-Lys and both
C6R and C6S, rather than two separate networks, each made
from a different diastereomeric complex. This was first
probed using differential scanning calorimetry (DSC). In self-
sorting gels, where two separate networks are formed, two
separate thermal transitions can sometimes be observed.”
Toluene gels (10 mM) were placed in a DSC pan and ana-
lysed, but the gels gave either a very small signal or no signal
at all, as only a relatively small part of the sample is the gela-
tor. 1,2,3,4-Tetrahydronaphthalene was thus used as a solvent
— it is chemically very similar to toluene but with a much
higher boiling point and 50 mM gels could now be analysed.
These more concentrated samples produced more easily de-
tectable heat changes.

Three samples were measured, using G2-Lys and either C6R,
C6S or a 50/50 mixture of both (Table 1). The calorimetry

traces recorded were still of low quality but did show repro-
ducible endo/exotherm peaks for each gel, representative of a
phase transition (the exotherms for gel formation were more
reproducible than the endotherms for gel breakdown). As
expected the gel formed with C6R had thermal transitions at
higher temperatures than that formed with C6S, and well sepa-
rated from it. When a gel with a 50:50 mixture of C6R and
C6S was analysed, it showed a single transition, in agreement
with a mixed co-assembled network being present rather than
two separate, independently melting networks. This transition
occurs at temperatures intermediate between those for the gels
formed with either C6R or C6S individually. Neither the en-
dotherm nor exotherm of this mixed sample were any broader
than those of the other samples, further supporting the conclu-
sion that a co-assembled network is formed. Co-assembly of
the different systems into a single network was broadly sup-
ported by the FEG-SEM images of the xerogel formed from
the mixed gel which shows a single network similar to both
the xerogels made with C6R or C6S (see supp. info.)

Table 1. DSC data for G2-Lys (50 mM) with C6R (50
mM) or C6S (50 mM) or both C6R and CSR (25 mM of
each).

%C6R | %C6S Endotherm Exotherm peak
peak max / °C max / °C

100 0 104 93

50 50 95 81

0 100 85 65

Further examination of these gels was then conducted using
VT-NMR experiments. Three samples were measured, using
G2-Lys (10 mM) and either C6R (10 mM), C6S (10 mM) or a
mixture of both (5 mM of each). All of these samples also
contained diphenylmethane (10 mM) as a mobile internal
standard. If molecules are immobile in the ‘solid-like’ fibre
network, they will not be observed by NMR, whereas if they
are in the mobile ‘liquid-like’ phase they will have quantifia-
ble resonances.'” The temperature of the sample was in-
creased and 'H NMR spectra recorded at 5°C intervals. The
concentration of mobile G2-Lys at each temperature was plot-
ted as a way of following dissolution of the gel network (see
supp info). This allowed us to quantify 7)o, (the temperature
at which all the gelator is mobile and “visible” in the 'H
NMR). The T4 and T, values are similar for each sample,
with the Tjqoq values being slightly higher in each case as this
represents the temperature at which the gelator network is
completely disbanded on the molecular scale, whereas T is
the point at which the macroscopic gel network can no longer
support itself against the force of gravity. Importantly, the
molecular scale data from this NMR experiment is in full
agreement with the macroscopic observations, indicating that
the thermal stability of the 50/50 gel was intermediate between
that containing 100% C6R and that with 100% C6S.

The thermodynamic parameters associated with the gel-sol
transition, AH, and ASg, values could also be found using
the van’t Hoff method plotting In[Sol] against 1/T."** Both
values for the sample made with C6R are larger than those for
the gel made with C6S. This would suggest that the C6R gel,
with a larger entropic gain upon dissolution is likely a highly
organised, more rigid and closely packed structure. The larger
endothermic change upon dissolution of this C6R network



indicates that this network is better stabilised by hydrogen
bonding interactions, again indicative of a more closely
packed structure. The C6S sample is less well organised and
less able to take advantage of hydrogen bonding. Interesting-
ly, the gel produced with a mixture of C6R and C6S has much
lower AHgy and ASy;, values than for either of the gels with
individual enantiomers. We suggest that this is due to the net-
work having to accommodate both C6R and C6S into the fi-
bres and the diastereomeric complexes formed being unable to
pack as efficiently into overall supramolecular aggregates. At
first, it might therefore seem surprising that the gel based on
the C6R/S mixture is not also thermally less stable than either
of the gels made with individual enantiomers given it has a
smaller AHy,,. However, the fact that it has a T,y value be-
tween those of the gels formed with either C6R or C6S alone
is a result of the balance between AHy;, and ASg,. The entrop-
ic cost of gelating 50/50 C6R and C6S drops very significant-
ly, and therefore even though the enthalpy of gelation is lower,
the relative lack of order within the mixed co-assembled gel
more than compensates for it in thermodyamic terms.

Table 2. Comparison of molecular (7Tyy4) and materials
(Tge) properties for gels formed with enantiomeric amines
C6R/S and the thermodynamic parameters associated with
the gel-sol transition.

C6R [ C6S | Tur /| Tioow /| AHuw /] ASqu/
°C °C kJmol™! J mol'K!

100% | 0% 80 83 78.3 181

50% 50% 74 77 454 91

0% 100% | 67 69 66.9 157

In summary, the chirality of the amine mixed with G2-Lys has
a significant effect on the assembly of the resulting complexes
and a pronounced effect on the gel that is produced. The chi-
rality of the amine profoundly affects the molecular-scale as-
sembly of complexes in solution (CD, NMR), the nanoscale
morphology of fibrous network formed (FEG-SEM and TEM)
and ultimately the macroscopic stability of the material pro-
duced (T,). Furthermore, when a gel is formed from a mix-
ture of G2-Lys and C6R/S with varying ratios of enantiomers,
a co-assembled network appears to be formed rather than indi-
vidual self-sorted assemblies.

Component Selection Experiments

In all of the systems described above, there was stoichiometric
equivalence between acid (G2-Lys) and total amine (C6R/S),
meaning all of the amine should be bound in each case. An
alternative experimental approach would provide G2-Lys with
a choice between different amines — a ‘component selection
experiment’.* To the best of our knowledge, this has not pre-
viously been done with regard to chiral selection within gels.

We therefore made gels made with a 1:1:1 mixture of G2-Lys,
C6R and C6S at concentrations ranging from 2-10 mM and the
T, values were measured. In each experiment, G2-Lys effec-
tively has a choice between the two amines — it could bind all
of one enantiomer, all of the other, or any ratio in between.
The T, values were compared to those of gels formed with
G2-Lys and C6R or C6S only (Fig. 4). The gels made from a
mixture of both enantiomers had T, values almost identical to
the more stable gels formed with only the C6R enantiomer.
This gives a strong indication that G2-Lys has selected to as-

semble its gel network primarily with C6R rather than C6S,
which we would propose remains unselected, and mobile in
solution (see below). Interestingly, we know from the analysis
of the 1:0.5:0.5 mixture described above, in which G2-Lys is
effectively forced by stoichiometry to interact with 50% of
each of the amines, that the T, value was only 74°C (10 mM).
As such, we can be confident that in the 1:1:1 component se-
lection system, we are indeed seeing significant enantioselec-
tivity, with T, being 79°C — much closer to the value for
100% C6R (80°C) than for the gel in which 50% each of C6R
and C6S have been taken up (74°C).
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Fig, 4. T, values measured for G2-Lys (1 eq.) with C6R (1 eq.),
C6S (1 eq.) or C6R and C6S (1 eq. of each).

The xerogel produced from the 1:1:1 mixture of G2-Lys, C6R
and C6S was imaged by FEG-SEM (see supp info). The imag-
es show a sample with a very ill-defined morphology. No dis-
tinct fibres are easily visible — similar to the SEM images seen
with C6R alone. However, given the limitations of FEG-SEM
for these very narrow nanofibers, we also made use of small
angle x-ray scattering experiments (SAXS) to probe the mor-
phology further. SAXS data for the solvated gels showed the
gels made with C6R and C6S had different cylinder form fac-
tors of 4 and 3 nm respectively. The component selecting
1:1:1 gel had a cylinder form factor of 4 nm — the same as the
gel made with only C6R. In addition, the 1:1:1 xerogel had
Bragg peaks which were more similar to the gel formed with
C6R alone than with C6S (see supp info).

Further analysis of the gel with a 1:1:1 mixture of G2-Lys,
C6R and C6S was performed using VT-NMR in toluene-dg
(all components 10 mM). The concentration of G2-Lys visible
in solution at each point was used to determine AHy and
ASgs. The gel has AHy = 56.0 kJ mol™” and ASgs = 1221
mol 'K These values are lower than for G2-Lys made with
either single enantiomer, but higher than for the 1:0.5:0.5 mix-
ture. This suggests that when G2-Lys has a choice between
C6R and C6S, it is not identical to the gel formed with C6R,
but neither is it anywhere near a 50:50 mix of enantiomers. It
should also be noted that the additional equivalent of amine
present in the gel will be in dynamic exchange with the amine
bound to the solid-like fibres, which might be expected to
decrease the thermodynamic stability and order of the gel.

We wanted to use NMR methods to directly quantify the
amount of each amine free in solution (and by inference that
immobilised in the solid-like fibres), as we hoped to determine
the enantioselectivity of this self-assembling system. We at-



tempted to do this using a chiral shift reagent approach, but
were unable to get sufficient peak separation between the dia-
stereomers formed from C6R and C6S in the liquid-like
phase. This led us to consider alternative approaches.

We decided to use a chiral derivatization reagent to probe
these component-selecting chiral gels further. Gels are fasci-
nating media for organic reactions — they are solvated and
porous, hence reagents and catalysts can be diffused in and out
of them very simply.21 In this case, we hoped to use the gela-
tion event to facilitate enantiomer separation by preferentially
immobilising one enantiomer into the gel nanofibers, allowing
the mobile enantiomer to diffuse out of the gel and react with a
chiral substrate. We reasoned this would allow us to infer how
much of each enantiomer was immobilised within the gel.
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Fig, 5, Reaction between C6R/S and (S)-methylbenzyl isocya-
nate, giving rise to diastereoisomeric products.

We formed the 1:1:1 gel with G2-Lys, C6R and C6S in tolu-
ene (0.5 mL). After gelation, a further amount of toluene (0.5
mL) was gently pipetted on top of the gel and the sample was
left for 24 hours to allow any amine not included in the solid-
like gel network to diffuse throughout the entire volume of
toluene. The supernatant solvent was removed using a pipette
and placed in a round bottom flask and an excess of (S)-
methylbenzyl isocyanate was added to derivatize all of the
chiral amine that had diffused into the toluene. This converts
the amine enantiomers into two diastereoisomeric ureas (Fig.
5), which, it was hoped, could be distinguished and quantified
by 'H NMR.

After reaction, the solvent was evaporated and reaction suc-
cess determined by NMR and MS analysis. The solid was
redissolved in CDCls, analysed by 'H NMR and compared to
samples prepared using the same method but with either C6R
or C6S alone. The difference in chemical shift between the
peaks of the CH;CH protons (originally on the amine) of each
diastereomeric urea was 0.085 ppm. There was also a measur-
able difference in the chemical shift of the peak of the terminal
CH;CH, group of each diastercomer (A6 = 0.072 ppm).
Therefore, when analysing the mixed gel, the resonances asso-

ciated with both diastereomers were easily resolved and the
relative amounts of each could be simply quantified (Fig. 6).
Of all the urea, 20% was derived from C6R and 80% from
C6S. This would indicate that the solid-like gelator fibre net-
work is formed from the inverse composition (80% C6R and
20% C6S). This result demonstrates unambiguously that there
is indeed selective uptake of the C6R enantiomer that forms
the most stable gel network into the gel fibres by G2-Lys. We
suggest that gels of this type maybe of interest for applications
in chiral resolution and enantioselective reaction pathways —
especially given that they can select between relatively low
quality chiral information.

5,S 5,5
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Fig. 6. NMR spectra of diasteromeric mixture arising from reac-
tion of C6R/S mixture diffused out of gel made with G2-Lys after
reaction with (§)-methylbenzyl isocyanate

Self-assembly of these multi-component gel nanofibers occurs
in several hierarchical steps, with the initial key steps being:
(i) formation of acid-base complexes, (ii) uni-directional self-
assembly of these complexes (Fig. 7). We wanted to deter-
mine whether the apparent selectivity of G2-Lys for the R
amine was associated with the initial formation of the acid-
base complex (step (i)) or self-assembly of the diastereomeric
complexes into gel fibres (step (ii)).

To examine the acid-base formation step, NMR titration ex-
periments were carried out in which the concentration of either
C6R or C6S remained constant while the concentration of G2-
Lys was increased. This titration was carried out in a solvent
(CDCl;) which did not support self-assembly of the complexes
and therefore effectively isolated the initial complexation
event (step (i).
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Schematic of self-assembly showing step (i) acid-base formation and step (ii) self-assembly of the complexes formed.



The change in chemical shift of the CH peak of C6R or C6S
as the concentration of G2-Lys increases was almost identical
(Fig. 8). To quantify binding, stability constants were fitted
using WinEQNMR2” and a 1:1 binding model. With C6R
logK = 4.30, with C6S logK = 4.37 (x15%), clearly showing
that, within error, the stability constant of the complex is the
same in each case. Acid-base complex formation (step(i)) is
therefore not responsible for the selective uptake of one amine
enantiomer, and step (ii) must be more important.
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Fig. 8. NMR titration of G2-Lys with C6R or C6S (2.0 mM) in
CDCl; indicating how the CH proton at the chiral centre of the
amine is perturbed on addition of the carboxylic acid.

We used infrared (IR) spectroscopy to probe this further. We
measured IR spectra of gels formed in toluene from G2-Lys
(10 mM) with C6R (10 mM) or C6S (10 mM). The IR spectra
were almost identical, reflecting the fact that both diastereo-
meric complexes give rise to gelation. However, there was a
reproducible difference in the IR absorbance associated with
the N-H (amide) stretch (ca. 3300 crn'l), with the N-H peak
being clearly split in two in the presence of C6R (see supp
info for data). This reflects that the chirality of the amine has
a direct effect on the self-assembly of G2-Lys which is under-
pinned by intramolecular amide-amide hydrogen bond interac-
tions. Furthermore, when we measured the IR spectrum of the
gel formed from G2-Lys (10 mM) with both C6R and C6S
(both 10 mM), the N-H stretch was identical to that observed
for C6R alone (see supp info). We can therefore conclude the
selective uptake of one amine enantiomer is driven by prefer-
ential self-assembly of the complex formed with C6R rather
than that with C6S (step (ii)). We suggest that the steric influ-
ence of the methyl group attached to the chiral centre on
C6R/C6S has a significant influence on the way these com-
plexes can pack, with C6R enabling better interaction between
G2-Lys peptides, while C6S compromises G2-Lys assembly
and enforces a chiral adjustment.

We then wanted to prove that this component selection was a
true thermodynamic preference, not simply the result of a ki-
netically trapped gel forming on cooling the sample. Kinetic
trapping could occur if, as the sample was cooled, the network
with G2-Lys and C6R preferentially formed simply because it
has the higher T, value: i.e., on reaching the temperature at
which the network with C6S could actually start to form, all of
the G2-Lys would already have been “used” in forming a net-
work with C6R. To test the reversibility of component selec-
tion and gel-assembly, a gel with G2-Lys and C6S was pre-
formed and a solution of C6R pipetted onto the gel and al-
lowed to diffuse into the sample for 5 days (Fig. 9). If the

system 1is kinetically trapped, it should not change. The pro-
portion of each amine in the network was calculated by deri-
vatizing the excess solution-phase amine with (S)-
methylbenzyl isocyanate as already described. After equili-
bration, an excess of C6S was found in solution — clearly it
has been displaced from the gel network by C6R. In the solu-
tion phase only 33% of the amine is C6R and 67% is C6S.
Therefore the gelator network is 67% C6R and 33% C6S,
demonstrating that the preference for C6R is primarily ther-
modynamic and that these gels are responsive — adapting and
evolving their compositions in response to chemical stimulus.
The selective uptake of C6R is slightly lower than observed
for the gel formed directly from the 1:1:1 mixture with a heat-
cool cycle (80% C6R, 20% C6S). We suggest that for the gel
formed by displacement the network needs to re-organise to
accommodate the new amine, slightly lowering selectivity.

C6R .. 5 Days

100% C6S Gel

67% C6R,
33% C6S Gel

Fig. 9. Schematic of thermodynamically controlled gel evolution
on addition of C6R to a gel made from G2-Lys and C6S.

In summary, when a 1:1:1 mixture of G2-Lys, C6R and C6S
is used to form a gel, the resulting gelator network is mainly
composed of G2-Lys and C6R, whilst most of the C6S is left
in the liquid-like phase — enantioselective component selec-
tion. Most importantly, this combination of experimental ap-
proaches allows us to directly connect macroscopic perfor-
mance (7,) with the molecular level behaviour (NMR). We
have also clearly demonstrated that these gels are adaptive and
responsive to changes in their external environment.

Fascinatingly, the ability of chiral gels to induce differential
uptake and reactivity in a mixture of enantiomeric amines
demonstrates how chirality can be simply passed on from one
source to another, with the gel matrix acting to preferentially
remove one enantiomer from the system. Porous gels are thus
fascinating media in which chiral information may be trans-
ferred and/or amplified.” Such a mechanism may have been
relevant in prebiotic evolution of homochiral systems — it has
often been noted that the interior of a cell is a gel-like matrix,
and it has been suggested that simple gels may have played a
pre-biotic role before the evolution of membranes.**

Probing Component Selection with a Range of
Amines

We then applied these techniques to mixtures of other chiral
amines (Fig. 10). In each case, we used the chirality of G2-
Lys to select between enantiomeric amines. This was rapidly
tested using T, evaluation and the reaction of excess amine
with (§)-methyl isocyanate combined with NMR characterisa-
tion. We took care to choose amines which gave rise to dia-
stereomeric products with (S)-methyl isocyanate having good
solubilities and distinguishable NMR peaks — for examples of
amines where this was not possible, see the supporting infor-
mation. We hoped to determine if:

a) molecular-level chiral selectivity is a general rule in
these systems,



b) the sense of chiral preference for R enantiomeric
amines is retained,

¢) macroscopic thermal performance can be rationalised
in terms of molecular level chiral selectivity.

C4iRils  HN TolR/S

e
;\/\/ HoN

HoN C6R/S X OO 2-NapRIS

HzN;\/\/\/ C8R/S HoN O

HZNW CIR/S O

Fig. 10. Selection of amines used successfully in component
selection experiments.

1-NapR/S

Initially, we tested chiral aliphatic amines, which have a me-
thyl group adjacent to the primary amine as the source of chi-
rality. The NMR derivatization experiment indicated that
C4iR, C8R and C9R are selected by G2-Lys in preference to
C4iS, C8S and C9S respectively (Table 3). As such, we note
that the chiral selectivity in all of these systems matches that
for C6R/S in which the R enantiomer is preferred because the
resulting complex better assembles into gel fibres.

The chiral preference observed by the derivatization approach
was also reflected in the thermal stability of the mixed gels.
Firstly, it should be noted that for all of these amines, the R
enantiomer forms a more thermally stable gel than the S (as
for C6R/S, Table 3). Furthermore, the 1:0.5:0.5 gels, in which
G2-Lys is forced to interact with both enantiomers equally
(i.e., 50% R, 50% S) had T, values somewhere in between
the R and S extremes. Considering the Ty, values for the
component selection 1:1:1 experiment (7 obs), in Which G2-
Lys has a choice of which amine to interact with, it is evident
that, in all cases, these Ty ovs values lie between those for the
50/50 mixture and those for 100% R (Table 3). As such, these
macroscopic observations are in agreement with the molecular
scale information which indicates preferential incorporation of
R amines into the gel. As such, we propose the molecular-
scale chiral information, enantioselected by G2-Lys, is being
read through into the macroscopic performance of the gel.

Table 3. Quantification of % amine incorporation in fi-
bres & enantiomeric excess (ee) of uptake into fibers using
molecular-scale derivatisation (NMR), and macroscopic-
scale analysis of T, data.

Molecular Scale Macroscopic Behaviour

amine | %R in | %S in | ee Toel T T T

fibres | fibres (R) (R/S) (S) obs
C4i 68% 32% 36% | 54 48 37 50
Cc6 80% 20% 60% | 80 74 67 79
C8 83% 17% 66% | 70 60 54 64
C9 79% 21% 58% | 61 52 46 54
Tol 68% 32% 36% | 60 54 53 59
1-Nap | 62% 38% 24% | 79 71 54 74
2-Nap | 54% 46% 8% 57 53 53 58

We then tested some chiral primary amines with pendant aro-
matic groups, TolR/S, 1-NapR/S and 2-NapR/S. Similarly to
the aliphatic amines, the R enantiomer was preferentially taken
into the gel over the S version and the thermal stability reflect-
ed this chiral preference (Table 3). However, in all cases, the
degree of chiral selectivity was somewhat lower than observed
for aliphatic amines and had all but disappeared for 2-NapR/S.
We propose that the greater steric hindrance of the aromatic
groups may hinder the chiral directing preference of G2-Lys
during self-assembly.

Conclusions

In conclusion, we have demonstrated that the chirality of the
amine used to form a gel with G2-Lys has a large bearing on
the assembly of the resulting diastereomeric complexes into
self-assembled gel networks. This has been investigated most
thoroughly using C6R/S but has also been observed using a
range of other amines, all of which have what would otherwise
be regarded as poor quality chiral centres. This demonstrates
the remarkable and powerful effect of chirality on gelation of
these systems. Importantly, the selective incorporation of one
enantiomer of an amine over the other into the gel network has
been demonstrated, and in all cases, the R amine that forms the
most stable gel network is primarily selected for incorporation
into the gel. The thermodynamic control over this process has
been proven by forming a gel exclusively with C6S and then
allowing C6R to diffuse through the sample and displace C6S
from the solid-like nanofibers. This forms a new nanoscale
network and shows that these gels can adapt and evolve in
response to chemical stimuli to which they are exposed. Fi-
nally, it has been demonstrated that excess amine — which
remains unincorporated within the gel network — can diffuse
out and selectively react with a chiral isocyanate. This al-
lowed us to quantify the enantioselectivity of component se-
lection within these gels, but also illustrates how gels can act
as selective reservoirs of potential reagents, releasing them on
demand to yield (in this case) one enantiomer (of amine) in
preference to another. We suggest that the lessons learned in
this research may go on to be applied in enantioseparation,
asymmetric synthesis, or the development of hydrogels which
can play active roles in pre-biotic reaction pathways.

SUPPORTING INFORMATION AVAILABLE

Full details of amine gelation studies including: T data for all
amines at different enantiomeric ratios, FEG-SEM imaging, VT-
NMR data, IR data, full data from selectivity studies including
NMR spectra of diastereomeric products. This information is
available free of charge via the Internet at http://pubs.acs.org/.
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