147 research outputs found

    A chip-scale atomic beam clock

    Full text link
    Atomic beams are a longstanding technology for atom-based sensors and clocks with widespread use in commercial frequency standards. Here, we report the demonstration a chip-scale microwave atomic beam clock using coherent population trapping (CPT) interrogation in a passively pumped atomic beam device. The beam device consists of a hermetically sealed vacuum cell fabricated from an anodically bonded stack of glass and Si wafers. Atomic beams are created using a lithographically defined microcapillary array connected to a Rb reservoir1 and propagate in a 15 mm long drift cavity. We present a detailed characterization of the atomic beam performance (total Rb flux 7.7×1011s1\approx 7.7 \times 10^{11} s^{-1} at 363 K device temperature) and of the vacuum environment in the device (pressure < 1 Pa), which is sustained using getter materials which pump residual gases and Rb vapor. A chip-scale beam clock is realized using Ramsey CPT spectroscopy of the 87Rb ground state hyperfine transition over a 10 mm Ramsey distance in the atomic beam device. The prototype atomic beam clock demonstrates a fractional frequency stability of 1.2×109/τ\approx 1.2 \times 10^{-9}/\sqrt{\tau} for integration times τ\tau from 1 s to 250 s, limited by detection noise. Optimized atomic beam clocks based on this approach may exceed the long-term stability of existing chip-scale clocks, and leading long-term systematics are predicted to limit the ultimate fractional frequency stability below 101210^{-12}.Comment: 22 pages, 4 figure

    Evidence for the accelerated expansion of the Universe from weak lensing tomography with COSMOS

    Full text link
    We present a tomographic cosmological weak lensing analysis of the HST COSMOS Survey. Applying our lensing-optimized data reduction, principal component interpolation for the ACS PSF, and improved modelling of charge-transfer inefficiency, we measure a lensing signal which is consistent with pure gravitational modes and no significant shape systematics. We carefully estimate the statistical uncertainty from simulated COSMOS-like fields obtained from ray-tracing through the Millennium Simulation. We test our pipeline on simulated space-based data, recalibrate non-linear power spectrum corrections using the ray-tracing, employ photometric redshifts to reduce potential contamination by intrinsic galaxy alignments, and marginalize over systematic uncertainties. We find that the lensing signal scales with redshift as expected from General Relativity for a concordance LCDM cosmology, including the full cross-correlations between different redshift bins. For a flat LCDM cosmology, we measure sigma_8(Omega_m/0.3)^0.51=0.75+-0.08 from lensing, in perfect agreement with WMAP-5, yielding joint constraints Omega_m=0.266+0.025-0.023, sigma_8=0.802+0.028-0.029 (all 68% conf.). Dropping the assumption of flatness and using HST Key Project and BBN priors only, we find a negative deceleration parameter q_0 at 94.3% conf. from the tomographic lensing analysis, providing independent evidence for the accelerated expansion of the Universe. For a flat wCDM cosmology and prior w in [-2,0], we obtain w<-0.41 (90% conf.). Our dark energy constraints are still relatively weak solely due to the limited area of COSMOS. However, they provide an important demonstration for the usefulness of tomographic weak lensing measurements from space. (abridged)Comment: 26 pages, 25 figures, matches version accepted for publication by Astronomy and Astrophysic

    Measurement of Angular Distributions and R= sigma_L/sigma_T in Diffractive Electroproduction of rho^0 Mesons

    Full text link
    Production and decay angular distributions were extracted from measurements of exclusive electroproduction of the rho^0(770) meson over a range in the virtual photon negative four-momentum squared 0.5< Q^2 <4 GeV^2 and the photon-nucleon invariant mass range 3.8< W <6.5 GeV. The experiment was performed with the HERMES spectrometer, using a longitudinally polarized positron beam and a ^3He gas target internal to the HERA e^{+-} storage ring. The event sample combines rho^0 mesons produced incoherently off individual nucleons and coherently off the nucleus as a whole. The distributions in one production angle and two angles describing the rho^0 -> pi+ pi- decay yielded measurements of eight elements of the spin-density matrix, including one that had not been measured before. The results are consistent with the dominance of helicity-conserving amplitudes and natural parity exchange. The improved precision achieved at 47 GeV, reveals evidence for an energy dependence in the ratio R of the longitudinal to transverse cross sections at constant Q^2.Comment: 15 pages, 15 embedded figures, LaTeX for SVJour(epj) document class Revision: Fig. 15 corrected, recent data added to Figs. 10,12,14,15; minor changes to tex

    Determination of the Deep Inelastic Contribution to the Generalised Gerasimov-Drell-Hearn Integral for the Proton and Neutron

    Full text link
    The virtual photon absorption cross section differences [sigma_1/2-sigma_3/2] for the proton and neutron have been determined from measurements of polarised cross section asymmetries in deep inelastic scattering of 27.5 GeV longitudinally polarised positrons from polarised 1H and 3He internal gas targets. The data were collected in the region above the nucleon resonances in the kinematic range nu < 23.5 GeV and 0.8 GeV**2 < Q**2 < 12 GeV**2. For the proton the contribution to the generalised Gerasimov-Drell-Hearn integral was found to be substantial and must be included for an accurate determination of the full integral. Furthermore the data are consistent with a QCD next-to-leading order fit based on previous deep inelastic scattering data. Therefore higher twist effects do not appear significant.Comment: 6 pages, 3 figures, 1 table, revte

    Participation in Corporate Governance

    Full text link

    Group IVB metalloidal substituent effects in the naphthalene system by fluorine-19 nuclear magnetic resonance

    No full text
    19F Substituent chemical shift (SCS) data for substituents of the type Me3M (where M represents Si, Ge, Sn, and Pb) attached to the naphthalene system provide experimental evidence that all the metalloidal substituents engage in dπ-pπ conjugative electron-withdrawal (-M) in the ground state: and suggested that certain approaches to the analysis of 19F SCS may be invalid

    Electrophilic Substitution with Allylic Rearrangement (SE′). Anti Stereoselectivity in Trifluoroacetolysis of Some CycIohex-2-enylsilanes, -germanes, and -stannanes

    No full text
    Trifluoroacetolysis of various cyclohex-2-enylsilanes, -germanes, and -stannanes is demonstrated to be γ regiospecific and highly anti stereoselective, as predicted for a dominating LUMO-HOMO interaction in a concerted S2′ process
    corecore