2,916 research outputs found

    The Rich Mid-Infrared Environments of Two Highly-Obscured X-ray Binaries: Spitzer Observations of IGR J16318-4848 and GX 301-2

    Get PDF
    We present the results of Spitzer mid-infrared spectroscopic observations of two highly-obscured massive X-ray binaries: IGR J16318-4848 and GX301-2. Our observations reveal for the first time the extremely rich mid-infrared environments of this type of source, including multiple continuum emission components (a hot component with T > 700 K and a warm component with T ~ 180 K) with apparent silicate absorption features, numerous HI recombination lines, many forbidden ionic lines of low ionization potentials, and pure rotational H2 lines. This indicates that both sources have hot and warm circumstellar dust, ionized stellar winds, extended low-density ionized regions, and photo-dissociated regions. It appears difficult to attribute the total optical extinction of both sources to the hot and warm dust components, which suggests that there could be an otherwise observable colder dust component responsible for the most of the optical extinction and silicate absorption features. The observed mid-infrared spectra are similar to those from Luminous Blue Variables, indicating that the highly-obscured massive X-ray binaries may represent a previously unknown evolutionary phase of X-ray binaries with early-type optical companions. Our results highlight the importance and utility of mid-infrared spectroscopy to investigate highly-obscured X-ray binaries.Comment: To appear in ApJ Letter

    Stochastic `Beads on a String' in the Accretion Tail of Arp 285

    Get PDF
    We present Spitzer infrared, GALEX UV, and SDSS and SARA optical images of the peculiar interacting galaxy pair Arp 285 (NGC 2856/4), and compare with a new numerical model of the interaction. We estimate the ages of clumps of star formation in these galaxies using population synthesis models, carefully considering the uncertainties on these ages. This system contains a striking example of `beads on a string': a series of star formation complexes ~1 kpc apart. These `beads' are found in a tail-like feature that is perpendicular to the disk of NGC 2856, which implies that it was formed from material accreted from the companion NGC 2854. The extreme blueness of the optical/UV colors and redness of the mid-infrared colors implies very young stellar ages (~4 - 20 Myrs) for these star forming regions. Spectral decomposition of these `beads' shows excess emission above the modeled stellar continuum in the 3.6 micron and 4.5 micron bands, indicating either contributions from interstellar matter to these fluxes or a second older stellar population. These clumps have -12.0 < M(B) < -10.6, thus they are less luminous than most dwarf galaxies. Our model suggests that bridge material falling into the potential of the companion overshoots the companion. The gas then piles up at apo-galacticon before falling back onto the companion, and star formation occurs in the pile-up. A luminous (M(B) ~ -13.6) extended (FWHM ~ 1.3 kpc) `bright spot' is visible at the northwestern edge of the NGC 2856 disk, with an intermediate stellar population (400 - 1500 Myrs). Our model suggests that this feature is part of a expanding ripple-like `arc' created by an off-center ring-galaxy-like collision between the two disks.Comment: Accepted by the Astronomical Journal. For color figures and appendix material, go tohttp://www.etsu.edu/physics/bsmith/research/sg/arp285/arp285.htm

    Detection of Coherent Vorticity Structures using Time-Scale Resolved Acoustic Spectroscopy

    Full text link
    We describe here an experimental technique based on the acoustic scattering phenomenon allowing the direct probing of the vorticity field in a turbulent flow. Using time-frequency distributions, recently introduced in signal analysis theory, for the analysis of the scattered acoustic signals, we show how the legibility of these signals is significantly improved (time resolved spectroscopy). The method is illustrated on data extracted from a highly turbulent jet flow : discrete vorticity events are clearly evidenced. We claim that the recourse to time-frequency distributions lead to an operational definition of coherent structures associated with phase stationarity in the time-frequency plane.Comment: 26 pages, 6 figures. Latex2e format Revised version : Added references, figures and Changed conten

    Isolation may select for earlier and higher peak viral load but shorter duration in SARS-CoV-2 evolution

    Get PDF
    During the COVID-19 pandemic, human behavior change as a result of nonpharmaceutical interventions such as isolation may have induced directional selection for viral evolution. By combining previously published empirical clinical data analysis and multi-level mathematical modeling, we find that the SARS-CoV-2 variants selected for as the virus evolved from the pre-Alpha to the Delta variant had earlier and higher peak in viral load dynamics but a shorter duration of infection. Selection for increased transmissibility shapes the viral load dynamics, and the isolation measure is likely to be a driver of these evolutionary transitions. In addition, we show that a decreased incubation period and an increased proportion of asymptomatic infection are also positively selected for as SARS-CoV-2 mutated to adapt to human behavior (i.e., Omicron variants). The quantitative information and predictions we present here can guide future responses in the potential arms race between pandemic interventions and viral evolution

    Rescaling of metal oxide nanocrystals for energy storage having high capacitance and energy density with robust cycle life

    Get PDF
    Nanocrystals are promising structures, but they are too large for achieving maximum energy storage performance. We show that rescaling 3-nm particles through lithiation followed by delithiation leads to high-performance energy storage by realizing high capacitance close to the theoretical capacitance available via ion-to-atom redox reactions. Reactive force-field (ReaxFF) molecular dynamics simulations support the conclusion that Li atoms react with nickel oxide nanocrystals (NiO-n) to form lithiated core–shell structures (Ni:Li_2O), whereas subsequent delithiation causes Ni:Li_2O to form atomic clusters of NiO-a. This is consistent with in situ X-ray photoelectron and optical spectroscopy results showing that Ni^(2+) of the nanocrystal changes during lithiation–delithiation through Ni^0 and back to Ni^(2+). These processes are also demonstrated to provide a generic route to rescale another metal oxide. Furthermore, assembling NiO-a into the positive electrode of an asymmetric device enables extraction of full capacitance for a counter negative electrode, giving high energy density in addition to robust capacitance retention over 100,000 cycles

    Metallicity-PAH Relation of MIR-selected Star-forming Galaxies in AKARI North Ecliptic Pole-wide Survey

    Full text link
    We investigate the variation in the mid-infrared spectral energy distributions of 373 low-redshift (z<0.4z<0.4) star-forming galaxies, which reflects a variety of polycyclic aromatic hydrocarbon (PAH) emission features. The relative strength of PAH emission is parameterized as qPAHq_\mathrm{PAH}, which is defined as the mass fraction of PAH particles in the total dust mass. With the aid of continuous mid-infrared photometric data points covering 7-24μ\mum and far-infrared flux densities, qPAHq_\mathrm{PAH} values are derived through spectral energy distribution fitting. The correlation between qPAHq_\mathrm{PAH} and other physical properties of galaxies, i.e., gas-phase metallicity (12+log(O/H)12+\mathrm{log(O/H)}), stellar mass, and specific star-formation rate (sSFR) are explored. As in previous studies, qPAHq_\mathrm{PAH} values of galaxies with high metallicity are found to be higher than those with low metallicity. The strength of PAH emission is also positively correlated with the stellar mass and negatively correlated with the sSFR. The correlation between qPAHq_\mathrm{PAH} and each parameter still exists even after the other two parameters are fixed. In addition to the PAH strength, the application of metallicity-dependent gas-to-dust mass ratio appears to work well to estimate gas mass that matches the observed relationship between molecular gas and physical parameters. The result obtained will be used to calibrate the observed PAH luminosity-total infrared luminosity relation, based on the variation of MIR-FIR SED, which is used in the estimation of hidden star formation.Comment: 19 pages, 9 figures, AJ, in pres

    RNA Interference mediated knockdown of genes in order to increase protein production using the baculovirus expression system

    Get PDF
    The baculovirus expression system has proven to be a robust and versatile system for recombinant protein production in insect cells. A wide range of promoters is available for the facile expression of transgenes, and yields of up to 50% of total protein have been reported. However, in many cases yield is decreased as a result of proteases and host cell apoptosis. Past efforts to overcome this problem include co-expressing chaperone proteins to assist with folding, anti-apoptotic proteins to reduce cell death, or adding chemical protease inhibitors to the culture media. However, these methods may have non-specific effects, prove too costly to be practical, or impose an undue metabolic burden on an already stressed cell. An alternative approach to increasing protein production is through the application of RNA interference (RNAi) to knockdown viral and host genes responsible for decreasing the yield of recombinant protein. Potential targets include proteases, cell-death proteins, and cell cycle regulators. By altering the metabolic landscape of cells prior to the introduction of the baculovirus, protein production can be improved.https://doi.org/10.1186/1475-2859-5-S1-P1

    From CFTR biology toward combinatorial pharmacotherapy:expanded classification of cystic fibrosis mutations

    Get PDF
    More than 2000 mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) have been described that confer a range of molecular cell biological and functional phenotypes. Most of these mutations lead to compromised anion conductance at the apical plasma membrane of secretory epithelia and cause cystic fibrosis (CF) with variable disease severity. Based on the molecular phenotypic complexity of CFTR mutants and their susceptibility to pharmacotherapy, it has been recognized that mutations may impose combinatorial defects in CFTR channel biology. This notion led to the conclusion that the combination of pharmacotherapies addressing single defects (e.g., transcription, translation, folding, and/or gating) may show improved clinical benefit over available low-efficacy monotherapies. Indeed, recent phase 3 clinical trials combining ivacaftor (a gating potentiator) and lumacaftor (a folding corrector) have proven efficacious in CF patients harboring the most common mutation (deletion of residue F508, ΔF508, or Phe508del). This drug combination was recently approved by the U.S. Food and Drug Administration for patients homozygous for ΔF508. Emerging studies of the structural, cell biological, and functional defects caused by rare mutations provide a new framework that reveals a mixture of deficiencies in different CFTR alleles. Establishment of a set of combinatorial categories of the previously defined basic defects in CF alleles will aid the design of even more efficacious therapeutic interventions for CF patients
    corecore