127 research outputs found
The Morphological Effects of Two Antimicrobial Peptides, Hecate-1 and Melittin, on Escherichia Coli
The effects of the 26 amino acid, cationic, amphipathic, antibacterial peptide melittin and hecate-1, a 23 amino acid analog of it, on the gram negative bacterium Escherichia coli were investigated using scanning electron microscopy (SEM), transmission electron micros-copy (TEM), and freeze-fracture. Both peptides killed virtually all bacteria at the peptide concentration and cell density used. TEM and SEM revealed aggregates of bacteria entangled with material extruded from the bacterial surfaces. SEM revealed irregular bacterial surfaces with bleb-like projections. TEM and freeze-fracture indicate that the bacterial inner and outer membranes, as well as the peptidoglycan layer between, were extensively damaged. The cytoplasmic contents of the cells, however, did not appear radically disturbed, providing little evidence for osmotically induced cytolysis
Exploring regulatory networks of miR-96 in the developing inner ear.
Mutations in the microRNA Mir96 cause deafness in mice and humans. In the diminuendo mouse, which carries a single base pair change in the seed region of miR-96, the sensory hair cells crucial for hearing fail to develop fully and retain immature characteristics, suggesting that miR-96 is important for coordinating hair cell maturation. Our previous transcriptional analyses show that many genes are misregulated in the diminuendo inner ear and we report here further misregulated genes. We have chosen three complementary approaches to explore potential networks controlled by miR-96 using these transcriptional data. Firstly, we used regulatory interactions manually curated from the literature to construct a regulatory network incorporating our transcriptional data. Secondly, we built a protein-protein interaction network using the InnateDB database. Thirdly, gene set enrichment analysis was used to identify gene sets in which the misregulated genes are enriched. We have identified several candidates for mediating some of the expression changes caused by the diminuendo mutation, including Fos, Myc, Trp53 and Nr3c1, and confirmed our prediction that Fos is downregulated in diminuendo homozygotes. Understanding the pathways regulated by miR-96 could lead to potential therapeutic targets for treating hearing loss due to perturbation of any component of the network
Oat consumption reduced intestinal fat deposition and improved health span in Caenorhabditis elegans model
© 2015 The Authors. In addition to their fermentable dietary fiber and the soluble β-glucan fiber, oats have unique avenanthramides that have anti-inflammatory and antioxidant properties that reduce coronary heart disease in human clinical trials. We hypothesized that oat consumption will increase insulin sensitivity, reduce body fat, and improve health span in Caenorhabditis elegans through a mechanism involving the daf-2 gene, which codes for the insulin/insulin-like growth factor-1-like receptor, and that hyperglycemia will attenuate these changes. Caenorhabditis elegans wild type (N2) and the null strains sir-2.1, daf-16, and daf-16/daf-2 were fed Escherichia coli (OP50) and oat flakes (0.5%, 1.0%, or 3%) with and without 2% glucose. Oat feeding decreased intestinal fat deposition in N2, daf-16, or daf-16/daf-2 strains (P \u3c.05); and glucose did not affect intestinal fat deposition response. The N2, daf-16, or sir-2.1 mutant increased the pharyngeal pumping rate (P \u3c.05), a surrogate marker of life span, following oat consumption. Oat consumption increased ckr-1, gcy-8, cpt-1, and cpt-2 mRNA expression in both the N2 and the sir-2.1 mutant, with significantly higher expression in sir-2.1 than in N2 (P \u3c.01). Additional glucose further increased expression 1.5-fold of the 4 genes in N2 (P \u3c.01), decreased the expression of all except cpt-1 in the daf-16 mutant, and reduced mRNA expression of the 4 genes in the daf-16/daf-2 mutant (P \u3c.01). These data suggest that oat consumption reduced fat storage and increased ckr-1, gcy-8, cpt-1, or cpt-2 through the sir-2.1 genetic pathway. Oat consumption may be a beneficial dietary intervention for reducing fat accumulation, augmenting health span, and improving hyperglycemia-impaired lipid metabolism
MiR-25 regulates Wwp2 and Fbxw7 and promotes reprogramming of mouse fibroblast cells to iPSCs.
BACKGROUND: miRNAs are a class of small non-coding RNAs that regulate gene expression and have critical functions in various biological processes. Hundreds of miRNAs have been identified in mammalian genomes but only a small number of them have been functionally characterized. Recent studies also demonstrate that some miRNAs have important roles in reprogramming somatic cells to induced pluripotent stem cells (iPSCs). METHODS: We screened 52 miRNAs cloned in a piggybac (PB) vector for their roles in reprogramming of mouse embryonic fibroblast cells to iPSCs. To identify targets of miRNAs, we made Dgcr8-deficient embryonic stem (ES) cells and introduced miRNA mimics to these cells, which lack miRNA biogenesis. The direct target genes of miRNA were identified through global gene expression analysis and target validation. RESULTS AND CONCLUSION: We found that over-expressing miR-25 or introducing miR-25 mimics enhanced production of iPSCs. We identified a number of miR-25 candidate gene targets. Of particular interest were two ubiquitin ligases, Wwp2 and Fbxw7, which have been proposed to regulate Oct4, c-Myc and Klf5, respectively. Our findings thus highlight the complex interplay between miRNAs and transcription factors involved in reprogramming, stem cell self-renewal and maintenance of pluripotency
Large-scale identification of microRNA targets in murine Dgcr8-deficient embryonic stem cell lines.
Small RNAs such as microRNAs play important roles in embryonic stem cell maintenance and differentiation. A broad range of microRNAs is expressed in embryonic stem cells while only a fraction of their targets have been identified. We have performed large-scale identification of embryonic stem cell microRNA targets using a murine embryonic stem cell line deficient in the expression of Dgcr8. These cells are heavily depleted for microRNAs, allowing us to reintroduce specific microRNA duplexes and identify refined target sets. We used deep sequencing of small RNAs, mRNA expression profiling and bioinformatics analysis of microRNA seed matches in 3' UTRs to identify target transcripts. Consequently, we have identified a network of microRNAs that converge on the regulation of several important cellular pathways. Additionally, our experiments have revealed a novel candidate for Dgcr8-independent microRNA genesis and highlighted the challenges currently facing miRNA annotation
Population structure of Streptococcus oralis
Streptococcus oralis is a member of the normal human oral microbiota, capable of opportunistic pathogenicity; like related oral streptococci, it exhibits appreciable phenotypic and genetic variation. A multilocus sequence typing (MLST) scheme for S. oralis was developed and the resultant data analysed to examine the population structure of the species. Analysis of 113 isolates, confirmed as belonging to the S. oralis/mitis group by 16S rRNA gene sequencing, characterized the population as highly diverse and undergoing inter- and intra-species recombination with a probable clonal complex structure. ClonalFrame analysis of these S. oralis isolates along with examples of Streptococcus pneumoniae, Streptococcus mitis and Streptococcus pseudopneumoniae grouped the named species into distinct, coherent populations and did not support the clustering of S. pseudopneumoniae with S. mitis as reported previously using distance-based methods. Analysis of the individual loci suggested that this discrepancy was due to the possible hybrid nature of S. pseudopneumoniae. The data are available on the public MLST website (http://pubmlst.org/soralis/)
Global Geometric Affinity for Revealing High Fidelity Protein Interaction Network
Protein-protein interaction (PPI) network analysis presents an essential role in understanding the functional relationship among proteins in a living biological system. Despite the success of current approaches for understanding the PPI network, the large fraction of missing and spurious PPIs and a low coverage of complete PPI network are the sources of major concern. In this paper, based on the diffusion process, we propose a new concept of global geometric affinity and an accompanying computational scheme to filter the uncertain PPIs, namely, reduce the spurious PPIs and recover the missing PPIs in the network. The main concept defines a diffusion process in which all proteins simultaneously participate to define a similarity metric (global geometric affinity (GGA)) to robustly reflect the internal connectivity among proteins. The robustness of the GGA is attributed to propagating the local connectivity to a global representation of similarity among proteins in a diffusion process. The propagation process is extremely fast as only simple matrix products are required in this computation process and thus our method is geared toward applications in high-throughput PPI networks. Furthermore, we proposed two new approaches that determine the optimal geometric scale of the PPI network and the optimal threshold for assigning the PPI from the GGA matrix. Our approach is tested with three protein-protein interaction networks and performs well with significant random noises of deletions and insertions in true PPIs. Our approach has the potential to benefit biological experiments, to better characterize network data sets, and to drive new discoveries
Conserved Expression Patterns Predict microRNA Targets
microRNAs (miRNAs) are major regulators of gene expression and thereby modulate many biological processes. Computational methods have been instrumental in understanding how miRNAs bind to mRNAs to induce their repression but have proven inaccurate. Here we describe a novel method that combines expression data from human and mouse to discover conserved patterns of expression between orthologous miRNAs and mRNA genes. This method allowed us to predict thousands of putative miRNA targets. Using the luciferase reporter assay, we confirmed 4 out of 6 of our predictions. In addition, this method predicted many miRNAs that act as expression enhancers. We show that many miRNA enhancer effects are mediated through the repression of negative transcriptional regulators and that this effect could be as common as the widely reported repression activity of miRNAs. Our findings suggest that the indirect enhancement of gene expression by miRNAs could be an important component of miRNA regulation that has been widely neglected to date
- …