58 research outputs found

    Coherence Times of Bose-Einstein Condensates beyond the Shot-Noise Limit via Superfluid Shielding

    Get PDF
    We demonstrate a new way to extend the coherence time of separated Bose-Einstein condensates that involves immersion into a superfluid bath. When both the system and the bath have similar scattering lengths, immersion in a superfluid bath cancels out inhomogeneous potentials either imposed by external fields or inherent in density fluctuations due to atomic shot noise. This effect, which we call superfluid shielding, allows for coherence lifetimes beyond the projection noise limit. We probe the coherence between separated condensates in different sites of an optical lattice by monitoring the contrast and decay of Bloch oscillations. Our technique demonstrates a new way that interactions can improve the performance of quantum devices.Samsung Scholarship FoundationNational Science Foundation (U.S.) (MIT-Harvard Center for Ultracold Atoms. Grant 1506369)United States. Air Force Office of Scientific Research. Multidisciplinary University Research Initiative (Grants FA9550-14-1-0035 and W911NF-14-1-0003

    The status of the world's land and marine mammals: diversity, threat, and knowledge

    Get PDF
    Knowledge of mammalian diversity is still surprisingly disparate, both regionally and taxonomically. Here, we present a comprehensive assessment of the conservation status and distribution of the world's mammals. Data, compiled by 1700+ experts, cover all 5487 species, including marine mammals. Global macroecological patterns are very different for land and marine species but suggest common mechanisms driving diversity and endemism across systems. Compared with land species, threat levels are higher among marine mammals, driven by different processes (accidental mortality and pollution, rather than habitat loss), and are spatially distinct (peaking in northern oceans, rather than in Southeast Asia). Marine mammals are also disproportionately poorly known. These data are made freely available to support further scientific developments and conservation action

    Expert range maps of global mammal distributions harmonised to three taxonomic authorities

    Get PDF
    AimComprehensive, global information on species' occurrences is an essential biodiversity variable and central to a range of applications in ecology, evolution, biogeography and conservation. Expert range maps often represent a species' only available distributional information and play an increasing role in conservation assessments and macroecology. We provide global range maps for the native ranges of all extant mammal species harmonised to the taxonomy of the Mammal Diversity Database (MDD) mobilised from two sources, the Handbook of the Mammals of the World (HMW) and the Illustrated Checklist of the Mammals of the World (CMW).LocationGlobal.TaxonAll extant mammal species.MethodsRange maps were digitally interpreted, georeferenced, error-checked and subsequently taxonomically aligned between the HMW (6253 species), the CMW (6431 species) and the MDD taxonomies (6362 species).ResultsRange maps can be evaluated and visualised in an online map browser at Map of Life (mol.org) and accessed for individual or batch download for non-commercial use.Main conclusionExpert maps of species' global distributions are limited in their spatial detail and temporal specificity, but form a useful basis for broad-scale characterizations and model-based integration with other data. We provide georeferenced range maps for the native ranges of all extant mammal species as shapefiles, with species-level metadata and source information packaged together in geodatabase format. Across the three taxonomic sources our maps entail, there are 1784 taxonomic name differences compared to the maps currently available on the IUCN Red List website. The expert maps provided here are harmonised to the MDD taxonomic authority and linked to a community of online tools that will enable transparent future updates and version control

    Superconducting Qubits in 3-D Cavity QED

    No full text

    Spin-Orbit Coupling and Quantum Spin Hall Effect for Neutral Atoms without Spin Flips

    No full text
    We propose a scheme which realizes spin-orbit coupling and the quantum spin Hall effect for neutral atoms in optical lattices without relying on near resonant laser light to couple different spin states. The spin-orbit coupling is created by modifying the motion of atoms in a spin-dependent way by laser recoil. The spin selectivity is provided by Zeeman shifts created with a magnetic field gradient. Alternatively, a quantum spin Hall Hamiltonian can be created by all-optical means using a period-tripling, spin-dependent superlattice.National Science Foundation (U.S.) (Award PHY-0969731)United States. Army Research Office (Grant W911NF-13-1-0031)United States. Defense Advanced Research Projects Agency. Optical Lattice Emulator ProgramUnited States. Office of Naval Researc

    Realizing the Harper Hamiltonian with Laser-Assisted Tunneling in Optical Lattices

    No full text
    We experimentally implement the Harper Hamiltonian for neutral particles in optical lattices using laser-assisted tunneling and a potential energy gradient provided by gravity or magnetic field gradients. This Hamiltonian describes the motion of charged particles in strong magnetic fields. Laser-assisted tunneling processes are characterized by studying the expansion of the atoms in the lattice. The band structure of this Hamiltonian should display Hofstadter’s butterfly. For fermions, this scheme should realize the quantum Hall effect and chiral edge states.National Science Foundation (U.S.) (Grant PHY-0969731)United States. Army Research Office (Grant W911NF-13-1-0031)United States. Office of Naval Researc

    Preparation of the Spin-Mott State: A Spinful Mott Insulator of Repulsively Bound Pairs

    No full text
    We observe and study a special ground state of bosons with two spin states in an optical lattice: the spin-Mott insulator, a state that consists of repulsively bound pairs that is insulating for both spin and charge transport. Because of the pairing gap created by the interaction anisotropy, it can be prepared with low entropy and can serve as a starting point for adiabatic state preparation. We find that the stability of the spin-Mott state depends on the pairing energy, and observe two qualitatively different decay regimes, one of which exhibits protection by the gap
    • 

    corecore