20 research outputs found

    A Three-Dimensional Pattern-Space Representation for Volumetric Arrays

    Get PDF
    A three-dimensional pattern-space representation is presented for volumetric arrays. In this representation, the radiation pattern of an array is formed by the evaluation of the three-dimensional pattern-space on a spherical surface. The scan angle of the array determines the position of this surface within the pattern-space. This pattern-space representation is used in conjunction with a genetic algorithm to minimize the sidelobe levels exhibited by a thinned volumetric array during scanning

    Grating Lobe Reduction in Aperiodic Linear Arrays of Physically Large Antennas

    Get PDF
    We present performance bounds obtained from the optimization of the sidelobe levels of aperiodic linear arrays. The antennas comprising these arrays are large compared to the distance between neighboring antennas, a case not addressed in previously published work. This optimization is performed in pattern-space and is applicable over a wide range of scan angles. We show that grating lobes can be suppressed even when the elemental antennas are several wavelengths in size, provided that the ratio of the antenna size to the average spacing between the antenna center-points does not exceed 80%

    Scan Loss Pattern Synthesis for Adaptive Array Ground Stations

    Get PDF
    We present several techniques for maximizing the contact time between low Earth orbiting satellites (LEOs) and a ground station (GS). The GS comprises an adaptive array of electronically steered space-fed lenses (SFLs). Each SFL is manufactured as a low-cost printed circuit with the result that it exhibits scanning loss. By differently orienting the boresights of the SFLs in the adaptive array, the SFL\u27s scanning losses can be made to optimally complement the path loss of the LEO, thereby reducing the cost of the GS while maximizing the download capacity of the satellite link. The optimization, implemented with a genetic algorithm (GA), can be viewed as a kind of pattern synthesis. Such arrays will benefit Earth exploration satellite service (EESS) and telemetry applications, promising a decreased cost and increased reliability as compared with GSs consisting of a large dish antenna. We show that a network of these GSs comprising a total of fourteen small antennas can achieve an average daily data rate that is comparable with that of a single large dish antenna for the Earth Observing One (EO-1) satellite, without increasing the output power of the satellite. We also analyze the case in which the satellite transmits with a variable bit rate (VBR). Furthermore, we show that by selectively populating the focal surface of the SFL with feeds, simultaneous communications with multiple satellites can be achieved with a single ground station

    Commensal observing with the Allen Telescope array: software command and control

    Full text link
    The Allen Telescope Array (ATA) is a Large-Number-Small-Diameter radio telescope array currently with 42 individual antennas and 5 independent back-end science systems (2 imaging FX correlators and 3 time domain beam formers) located at the Hat Creek Radio Observatory (HCRO). The goal of the ATA is to run multiple back-ends simultaneously, supporting multiple science projects commensally. The primary software control systems are based on a combination of Java, JRuby and Ruby on Rails. The primary control API is simplified to provide easy integration with new back-end systems while the lower layers of the software stack are handled by a master observing system. Scheduling observations for the ATA is based on finding a union between the science needs of multiple projects and automatically determining an efficient path to operating the various sub-components to meet those needs. When completed, the ATA is expected to be a world-class radio telescope, combining dedicated SETI projects with numerous radio astronomy science projects.Comment: SPIE Conference Proceedings, Software and Cyberinfrastructure for Astronomy, Nicole M. Radziwill; Alan Bridger, Editors, 77400Z, Vol 774

    Real-Time Beamforming Using High-Speed FPGAs at the Allen Telescope Array

    Get PDF
    The Allen Telescope Array (ATA) at the Hat Creek Radio Observatory (HCRO) is a wide‐field panchromatic radio telescope currently consisting of 42 offset‐Gregorian antennas each with a 6 m aperture, with plans to expand the array to 350 antennas. Through unique back‐end hardware, the ATA performs real‐time wideband beamforming with independent subarray capabilities and customizable beam shaping. The beamformers enable science observations requiring the full gain of the array, time domain (nonintegrated) output, and interference excision or orthogonal beamsets. In this paper we report on the design of this beamformer, including architecture and experimental results. Furthermore, we address some practical considerations in large‐N wideband beamformers implemented on field programmable gate array platforms, including device utilization, methods of calibration and control, and interchip synchronization

    The Allen Telescope Array Search for Electrostatic Discharges on Mars

    Get PDF
    The Allen Telescope Array was used to monitor Mars between 9 March and 2 June 2010, over a total of approximately 30 hours, for radio emission indicative of electrostatic discharge. The search was motivated by the report from Ruf et al. (2009) of the detection of non-thermal microwave radiation from Mars characterized by peaks in the power spectrum of the kurtosis, or kurtstrum, at 10 Hz, coinciding with a large dust storm event on 8 June 2006. For these observations, we developed a wideband signal processor at the Center for Astronomy Signal Processing and Electronics Research (CASPER). This 1024-channel spectrometer calculates the accumulated power and power-squared, from which the spectral kurtosis is calculated post-observation. Variations in the kurtosis are indicative of non-Gaussianity in the signal, which can be used to detect variable cosmic signals as well as radio frequency interference (RFI). During the three month period of observations, dust activity occurred on Mars in the form of small-scale dust storms, however no signals indicating lightning discharge were detected. Frequent signals in the kurtstrum that contain spectral peaks with an approximate 10 Hz fundamental were seen at both 3.2 and 8.0 GHz, but were the result of narrowband RFI with harmonics spread over a broad frequency range.Comment: 26 pages, 12 figures, accepted to Ap

    ES2008-54271 Simulation, Analysis and Systems Engineering of a Hybrid-Electric Race Car

    Get PDF
    ABSTRACT For the past two years, Embry-Riddle has participated in the SAE Formula Hybrid competition. As part of the competition, a team of students analyze, design, and build a fully functional hybrid-electric race car. As an academic competition, the event is designed to allow a wide variety of system configurations and fuel choices. In order to optimize the vehicle characteristics, simulate vehicle performance, and build control laws, the design team created a Simulink model of the race car. As a recently created design competition, the SAE Formula Hybrid event offers an opportunity for both design innovation and system engineering. To develop a concept for the competition, the ERAU team developed detailed simulations of the vehicle in Simulink. Since the competition allows a variety of energy storage devices, engines, fuels, driveline configurations, and control systems, the development of a system dynamics model was not straight-forward. Further, system components for this project are constrained by some rules and practical constraints. The vehicle configuration was selected to be a parallel hybrid using a 250cc gasoline engine and 7.2kW DC motor with 1500F ultra-capacitor energy storage, with an unusual control strategy. The results of the Simulink model were used to predict how this vehicle configuration compares to other design choices including alternative fuels, energy storage devices and control strategies. The performance of the actual vehicle at the 2008 SAE Formula Hybrid competition, which occurs May 2008, will be presented at the conference

    LEO Download Capacity Analysis for a Network of Adaptive Array Ground Stations

    Get PDF
    To lower costs and reduce latency, a network of adaptive array ground stations, distributed across the United States, is considered for the downlink of a polar-orbiting low earth orbiting (LEO) satellite. Assuming the X-band 105 Mbps transmitter of NASA s Earth Observing 1 (EO-1) satellite with a simple line-of-sight propagation model, the average daily download capacity in bits for a network of adaptive array ground stations is compared to that of a single 11 m dish in Poker Flats, Alaska. Each adaptive array ground station is assumed to have multiple steerable antennas, either mechanically steered dishes or phased arrays that are mechanically steered in azimuth and electronically steered in elevation. Phased array technologies that are being developed for this application are the space-fed lens (SFL) and the reflectarray. Optimization of the different boresight directions of the phased arrays within a ground station is shown to significantly increase capacity; for example, this optimization quadruples the capacity for a ground station with eight SFLs. Several networks comprising only two to three ground stations are shown to meet or exceed the capacity of the big dish, Cutting the data rate by half, which saves modem costs and increases the coverage area of each ground station, is shown to increase the average daily capacity of the network for some configurations

    The Allen Telescope Array: The First Widefield, Panchromatic, Snapshot Radio Camera for Radio Astronomy and SETI

    Get PDF
    The first 42 elements of the Allen Telescope Array (ATA-42) are beginning to deliver data at the Hat Creek Radio Observatory in Northern California. Scientists and engineers are actively exploiting all of the flexibility designed into this innovative instrument for simultaneously conducting surveys of the astrophysical sky and conducting searches for distant technological civilizations. This paper summarizes the design elements of the ATA, the cost savings made possible by the use of COTS components, and the cost/performance trades that eventually enabled this first snapshot radio camera. The fundamental scientific program of this new telescope is varied and exciting; some of the first astronomical results will be discussed.Comment: Special Issue of Proceedings of the IEEE: "Advances in Radio Telescopes", Baars,J. Thompson,R., D'Addario, L., eds, 2009, in pres
    corecore