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Abstract— A three-dimensional pattern-space representation is 

presented for volumetric arrays.  In this representation, the 
radiation pattern of an array is formed by the evaluation of the 
three-dimensional pattern-space on a spherical surface.  The scan 
angle of the array determines the position of this surface within 
the pattern-space.  This pattern-space representation is used in 
conjunction with a genetic algorithm to minimize the sidelobe 
levels exhibited by a thinned volumetric array during scanning.   
 
 

Index Terms—Antenna arrays, genetic algorithms 

I. INTRODUCTION 

HASED arrays are sometimes required to have a large 
aperture but a relatively small number of antennas.  

Placing these antennas at periodic intervals exceeding one half 
wavelength creates grating lobes in the radiation pattern and 
limits the usefulness of the array.  Aperiodic placement 
techniques can remove grating lobes and minimize the 
sidelobe level of the array, as shown in Fig. 1 [1]. 

Theories of aperiodic arrays have been described in detail 
[2-3] and the usefulness of optimization algorithms in their 
design is well known.  If the array steers the main beam over a 
variety of steering angles, a pattern-space evaluation can be 
used to determine the worst-case sidelobe levels in a single 
step, as opposed to evaluating all possible radiation patterns 
individually [1, 4].  This technique reduces the number of 
dimensions required in the analysis, greatly improving the 
speed of these algorithms.  Although the design of aperiodic 
linear and planar arrays has been well-explored, little attention 
has been given to the design of aperiodic volumetric arrays.  
This is due partially to the lack of an effective pattern-space 
representation for volumetric arrays. 

In certain applications, volumetric arrays are preferred over 
planar or linear arrays.  For example, planar and linear arrays 
exhibit main-beam broadening when steered toward the end-
fire direction of the array.  These arrays may be unsuitable for 
applications requiring the array to exhibit a constant beam 
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shape.  On the other hand, volumetric arrays can maintain a 
constant main-beam resolution regardless of steering angle. 

We present a three-dimensional representation of the 
pattern-space of a volumetric array.  It is shown that the 
radiation pattern of a volumetric array is found by evaluating 
the pattern-space on a spherical surface.  The position of this 
surface within the pattern-space is determined by the steering 
angle of the array.  This pattern-space representation is 
integrated with an optimization algorithm to minimize the 
sidelobe levels exhibited by an aperiodic volumetric array 
during scanning.  Some results from this algorithm are 
presented at the conclusion of this paper.    

 

II. DERIVATION OF THE PATTERN-SPACE 

A. Deriving the Pattern-Space Representation 
The pattern-space of an array is obtained by examining the 

mathematical form of the beamformer.  The beamformer is 
given by H=y a x , where y  is the output beam and Ha  is 
the Hermitian (complex transpose) of the steering vector.  The 
vector x  consists of the antenna phasors written as 

 
( )exp cos sin sin sin cosi i i ijk X Y Zφ θ φ θ θ⎡ ⎤= + +⎣ ⎦x , (1) 

 
where 2k π λ= , φ  and θ  represent the angle of arrival of a 
signal, and iX , iY , and iZ  represent the position of the thi  
elemental antenna out of N  total antennas. 

Using primed angles to indicate the steering direction, the 
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Fig. 1.  Radiation patterns illustrating grating lobe reduction.  Sidelobe level 
relative to the main lobe (RSLL) is plotted for an array of 15 elemental 
antennas with 0.4 wavelength spacing (solid), 8 elemental antennas with 0.8 
wavelength spacing (dot) and 8 elemental antennas with aperiodic spacings 
occupying the same aperture (dash). 
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steering vector is written as 
 

( )exp cos sin sin sin cos .

H
i

i i ijk X Y Zφ θ φ θ θ

=

′ ′ ′ ′ ′⎡ ⎤− + +⎣ ⎦

a
 (2) 

 
Abbreviating the functions coscθ θ=  and sinsθ θ=  and  
writing the beamformer yields 

 

( ) ( )
( )1

exp
N

i i

i i

X c s c s Y s s s s
jk

Z c c
φ θ φ θ φ θ φ θ

θ θ=

⎧ ⎫⎡ ⎤′ ′ ′ ′− + −⎪ ⎪⎢ ⎥= ⎨ ⎬
⎢ ⎥′+ −⎪ ⎪⎣ ⎦⎩ ⎭

∑y . (3) 

 
In the case of a linear array positioned on the Y axis, the 
equation simplifies to 

 

( ){ }
1

exp .
N

i
i

jk Y s sφ φ
=

⎡ ⎤′= −⎣ ⎦∑y  (4) 

 
The pattern-space representation for a linear array is 

obtained from the substitution s sφ φ′Ψ = −  [5], which has the 
range ( )1sφ′Ψ = − ±  for a total range of 2± .  The magnitude 
of (4) is symmetric about the main beam at 0Ψ = .  Fig. 1 
contains examples of patterns-space representations of linear 
arrays.  Evaluating (4) between 0Ψ =  and 2Ψ =  yields the 
worst-case sidelobe level exhibited by the array for all possible 
scan angles.  Without a pattern-space representation, it is 
necessary to evaluate the radiation pattern at many steering 
angles to determine the worst-case sidelobe levels.  

B. Planar and Volumetric Arrays 
In the case of a planar array located in the XY plane, the 

output of the ideal beamformer is given by 
 

( ) ( ){ }
1

exp
N

i i
i

jk X c s c s Y s s s sφ θ φ θ φ θ φ θ
=

⎡ ⎤′ ′ ′ ′= − + −⎣ ⎦∑y . (5) 

 
By defining the pattern-space u c s c sφ θ φ θ′ ′Δ = −  and 

v s s s sφ θ φ θ′ ′Δ = − , the maximum extent of these variables is the 
circle 2 2 4u vΔ + Δ = .  For any steering angle, the radiation 
pattern is defined by a circle of radius 1 within the pattern-
space, as shown in Fig. 3.  

In previous work (see e.g. [1]) pattern-space optimization of 
aperiodic arrays was applied only to linear and planar arrays.  
Although randomly distributed volumetric arrays have been 
demonstrated [6], pattern-space representations and 
optimization algorithms have not been applied. 

The pattern-space of a volumetric array is found by 
rewriting the ideal beamformer as  

 

( )
1

exp
N

i i i
i

jk X u Y v Z w
=

⎡ ⎤= Δ + Δ + Δ⎣ ⎦∑y , (6) 

 
where w c cθ θ′Δ = − .  The maximum extent of the pattern-space 
is defined in the volume 2 2 2 4.u v wΔ + Δ + Δ =   For any 
steering angle, the radiation pattern is evaluated on the surface 
of a sphere that intersects the origin and has a radius of 1, as 
shown in Fig. 4.  The steering angle determines the center of 
this spherical surface within the pattern-space.  Consequently, 

 
 
Fig. 3.  Pattern-space representation for a planar array.  The circles indicate 
the pattern exhibited by the array when it is steered to the horizon (a) and to 
zenith (b).  Plotted for a 5x5 array with 0.75λ average spacing between 
antennas.  The color scale is from -20 to 0 dB relative to the main lobe. 
  

 
 

Fig. 4.  Pattern-space representation for a volumetric array.  Two spheres 
intersect the main lobe at the origin, and indicate patterns for an array 
steered to the horizon (a) and the same array steered to zenith (b).  Plotted 
for a 3x3x3 array with 0.75λ average spacing between antennas.  Uses the 
same color scale as Fig. 3.  Indicated features correspond to those in Fig. 5.  
The dotted arcs indicate the pattern-space boundary and an equatorial arc.   
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the radiation pattern of volumetric arrays changes dramatically 
during beam steering as opposed to cases with planar or linear 
arrays.  Grating lobes contained within the volume are 
exhibited only when the surface of the radiation pattern 
intersects the lobe.   

Fig. 5 contains planar projections of the radiation pattern of 
the array from Fig. 4.  These plots correspond to the cases 
when the main beam is steered toward the horizon and to 
zenith.  These projections show the characteristic change in the 
radiation pattern of a volumetric array for different steering 
angles.  Additionally, these projections demonstrate the 
required similarity at points where the spherical shells of these 
radiation patterns intersect in pattern-space.  The black ellipses 
indicate the curve corresponding to this intersection.  Several 
features are easily recognized, including a high sidelobe and a 
nearby null.  These features are also visible in the perspective 
plot in Fig. 4.   

C. Consistency Between Pattern-Spaces 
A three-dimensional pattern-space is counterintuitive 

because radiation patterns are evaluated only along two look-
angles (φ  and θ ).  However, the three-dimensional 
representation is consistent with this requirement and with the 
pattern-space representations of planar and linear arrays.  For 
example, for an array confined to the XY plane, the three-
dimensional pattern-space is independent of wΔ .  Projecting 
the pattern-space in Fig. 4 onto the uv plane yields the pattern-
space representation used for planar arrays (as in Fig. 3).   

III. OPTIMIZING VOLUMETRIC ARRAYS 

A. Genetic Algorithm 
The three-dimensional pattern-space representation was 

integrated with a genetic algorithm (GA) to minimize the 
sidelobe levels of an aperiodic volumetric array.  The 
usefulness of genetic algorithms as optimization tools is well 
known and they have been applied successfully to aperiodic 
linear and planar array design for more than a decade [1, 7].   

The basic processes of a GA are shown in Fig. 6.  The GA 
employed in this study implements the concepts of mutation 
and crossover.  The algorithm allows mutation to alter genes 
by up to ten percent during each generation.  The GA 
terminates after 20 generations without improvement, and each 
trial is repeated many times to ensure statistical reliability of 
the results.  The fitness of individuals within the algorithm was 
defined by the inverse of the maximum relative sidelobe level, 
or –RSLL [1].  The algorithm maximizes the fitness of the 
population. 

B. Optimization Model 
 The GA represented arrays using the model shown in Fig. 7, 
which is similar to that presented in [4].  The antenna positions 
are optimized with respect to their proximal grid points, which 
are distributed throughout the aperture at intervals of S .  
Antenna positions are described by continuous variables 
representing the offset from the proximal grid point, rather 
than Boolean values describing the presence or absence of an 

       
 
Fig. 5.  Planar projections of the pattern-space of the volumetric array from Fig. 4, evaluated for the hemispheres containing the main lobe.   (Left) A uw 
projection for the radiation pattern when the array is steered toward the horizon.  (Right) A uv projection for the radiation pattern when the array is steered to 
zenith.  The black ellipse corresponds to the curve where the two radiation patterns intersect in uvw space.  The two radiation patterns exhibit the same values 
for points on this ellipse.  Easily recognized features include the strong sidelobe and its neighboring null, which are indicated on the plots. 
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antenna at a grid point.  The number of antennas and the 
spacing between the grid points are defined prior to the 
execution of the algorithm. 

C. Optimization Results 
The algorithm was used to optimize an aperiodic volumetric 

array consisting of 27 elements in a 3x3x3 configuration.  The 
spacing between adjacent grid points was varied between λ  
and 3λ .  Fig. 7 shows the results of this optimization.  Data 
from the optimization of an 8-element linear array and a 25-
element planar array are included for comparison.  In each 
case, the arrays were optimized in pattern space for operation 
over all possible steering angles.  The distance between 
adjacent grid points was the same in each dimension (X, Y, Z). 

The optimized sidelobes of the 27-element volumetric array 
are between 1dB and 2dB higher than those for the 25-element 
planar array having the same spacing between adjacent 
gridpoints, and about 1dB higher than those for the linear array 
containing only 8 elements.  This is due to the increased 
complexity of the pattern-space of the volumetric array.   

 

IV. CONCLUSIONS 

The three-dimensional pattern-space is an effective and 
accurate representation of the radiation pattern exhibited by a 
volumetric array.  When this pattern-space representation is 
implemented in an optimization algorithm, the computational 
cost of the algorithm is significantly reduced.  For example, if 
an array requires M  sample points along each coordinate axis 

(u, v, w) to adequately determine the worst-case sidelobe level, 
the algorithm must evaluate 3M  discrete samples of the 
pattern-space.  If the pattern-space representation is not used 
and many individual radiation patterns are calculated and 
analyzed, approximately 4M  discrete samples are required. 

The optimized sidelobes of a volumetric array were found to 
be higher than those of a similar planar array.  However, 
volumetric arrays are preferred over planar arrays in 
applications requiring the array to present a constant beam-
shape throughout a wide range of steering angles.  Future work 
involves analysis of volumetric arrays having a large number 
of antennas and extending this analysis to conformal arrays. 
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Fig. 7.  The aperiodic array model used in this study.  The difference 
between the position of an antenna and its proximal grid point is indicated 
by δx, δy, and δz. 
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