91 research outputs found

    Obligatory role for phosphatidylinositol 4,5-bisphosphate in activation of native TRPC1 store-operated channels in vascular myocytes

    Get PDF
    In the present study the effect of phosphatidylinositol 4,5-bisphosphate (PIP2) was studied on a native TRPC1 store-operated channel (SOC) in freshly dispersed rabbit portal vein myocytes. Application of diC8-PIP2, a water soluble form of PIP2, to quiescent inside-out patches evoked single channel currents with a unitary conductance of 1.9 pS. DiC8-PIP2-evoked channel currents were inhibited by anti-TRPC1 antibodies and these characteristics are identical to SOCs evoked by cyclopiazonic acid (CPA) and BAPTA-AM. SOCs stimulated by CPA, BAPTA-AM and the phorbol ester phorbol 12,13-dibutyrate (PDBu) were reduced by anti-PIP2 antibodies and by depletion of tissue PIP2 levels by pre-treatment of preparations with wortmannin and LY294002. However, these reagents did not alter the ability of PIP2 to activate SOCs in inside-out patches. Co-immunoprecipitation techniques demonstrated association between TRPC1 and PIP2 at rest, which was greatly decreased by wortmannin and LY294002. Pre-treatment of cells with PDBu, which activates protein kinase C (PKC), augmented SOC activation by PIP2 whereas the PKC inhibitor chelerythrine decreased SOC stimulation by PIP2. Co-immunoprecipitation experiments provide evidence that PKC-dependent phosphorylation of TRPC1 occurs constitutively and was increased by CPA and PDBu but decreased by chelerythrine. These novel results show that PIP2 can activate TRPC1 SOCs in native vascular myocytes and plays an important role in SOC activation by CPA, BAPTA-AM and PDBu. Moreover, the permissive role of PIP2 in SOC activation requires PKC-dependent phosphorylation of TRPC1

    Store depletion induces Gαq-mediated PLCβ1 activity to stimulate TRPC1 channels in vascular smooth muscle cells.

    Get PDF
    Depletion of sarcoplasmic reticulum (SR) Ca(2+) stores activates store-operated channels (SOCs) composed of canonical transient receptor potential (TRPC) 1 proteins in vascular smooth muscle cells (VSMCs), which contribute to important cellular functions. We have previously shown that PKC is obligatory for activation of TRPC1 SOCs in VSMCs, and the present study investigates if the classic phosphoinositol signaling pathway involving Gαq-mediated PLC activity is responsible for driving PKC-dependent channel gating. The G-protein inhibitor GDP-β-S, anti-Gαq antibodies, the PLC inhibitor U73122, and the PKC inhibitor GF109203X all inhibited activation of TRPC1 SOCs, and U73122 and GF109203X also reduced store-operated PKC-dependent phosphorylation of TRPC1 proteins. Three distinct SR Ca(2+) store-depleting agents, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester, cyclopiazonic acid, and N,N,N',N'-tetrakis(2-pyridylmethyl)ethane-1,2-diamineed, induced translocations of the fluorescent biosensor GFP-PLCδ1-PH from the cell membrane to the cytosol, which were inhibited by U73122. Knockdown of PLCβ1 with small hairpin RNA reduced both store-operated PLC activity and stimulation of TRPC1 SOCs. Immunoprecipitation studies and proximity ligation assays revealed that store depletion induced interactions between TRPC1 and Gαq, and TRPC1 and PLCβ1. We propose a novel activation mechanism for TRPC1 SOCs in VSMCs, in which store depletion induces formation of TRPC1-Gαq-PLCβ1 complexes that lead to PKC stimulation and channel gating.-Shi, J., Miralles, F., Birnbaumer, L., Large, W. A., Albert, A. P. Store depletion induces Gαq-mediated PLCβ1 activity to stimulate TRPC1 channels in vascular smooth muscle cells

    Activation of native TRPC1/C5/C6 channels by endothelin-1 is mediated by both PIP3 and PIP2 in rabbit coronary artery myocytes

    Get PDF
    We investigate activation mechanisms of native TRPC1/C5/C6 channels (termed TRPC1 channels) by stimulation of endothelin-1 (ET-1) receptor subtypes in freshly dispersed rabbit coronary artery myocytes using single channel recording and immunoprecipitation techniques. ET-1 evoked non-selective cation channel currents with a unitary conductance of 2.6 pS which were not inhibited by either ET(A) or ET(B) receptor antagonists, respectively BQ-123 and BQ788, when administered separately. However, in the presence of both antagonists, ET-1-evoked channel activity was abolished indicating that both ET(A) and ET(B) receptor stimulation activate this conductance. Stimulation of both ET(A) and ET(B) receptors evoked channel activity which was inhibited by the protein kinase C (PKC) inhibitor chelerythrine and by anti-TRPC1 antibodies indicating that activation of both receptor subtypes causes TRPC1 channel activation by a PKC-dependent mechanism. ET(A) receptor-mediated TRPC1 channel activity was selectively inhibited by phosphoinositol-3-kinase (PI-3-kinase) inhibitors wortmannin (50 nm) and PI-828 and by antibodies raised against phosphoinositol-3,4,5-trisphosphate (PIP(3)), the product of PI-3-kinase-mediated phosphorylation of phosphatidylinositol 4,5-bisphosphate (PIP(2)). Moreover, exogenous application of diC8-PIP(3) stimulated PKC-dependent TRPC1 channel activity. These results indicate that stimulation of ET(A) receptors evokes PKC-dependent TRPC1 channel activity through activation of PI-3-kinase and generation of PIP(3). In contrast, ET(B) receptor-mediated TRPC1 channel activity was inhibited by the PI-phospholipase C (PI-PLC) inhibitor U73122. 1-Oleoyl-2-acetyl-sn-glycerol (OAG), an analogue of diacylglycerol (DAG), which is a product of PI-PLC, also activated PKC-dependent TRPC1 channel activity. OAG-induced TRPC1 channel activity was inhibited by anti-phosphoinositol-4,5-bisphosphate (PIP(2)) antibodies and high concentrations of wortmannin (20 μm) which depleted tissue PIP(2) levels. In addition exogenous application of diC8-PIP(2) activated PKC-dependent TRPC1 channel activity. These data indicate that stimulation of ET(B) receptors evokes PKC-dependent TRPC1 activity through PI-PLC-mediated generation of DAG and requires a permissive role of PIP(2). In conclusion, we provide the first evidence that stimulation of ET(A) and ET(B) receptors activate native PKC-dependent TRPC1 channels through two distinct phospholipids pathways involving a novel action of PIP(3), in addition to PIP(2), in rabbit coronary artery myocytes

    Inhibition of native TRPC6 channel activity by phosphatidylinositol 4,5-bisphosphate in mesenteric artery myocytes

    Get PDF
    The present work investigates the effect of phosphatidylinositol-4,5-bisphosphate (PIP2) on native TRPC6 channel activity in freshly dispersed rabbit mesenteric artery myocytes using patch clamp recording and co-immunoprecipitation methods. Inclusion of 100 μm diC8-PIP2 in the patch pipette and bathing solutions, respectively, inhibited angiotensin II (Ang II)-evoked whole-cell cation currents and TRPC6 channel activity by over 90%. In inside-out patches diC8-PIP2 also inhibited TRPC6 activity induced by the diacylglycerol analogue 1-oleoyl-2-acetyl-sn-glycerol (OAG) with an IC50 of 7.6 μm. Anti-PIP2 antibodies potentiated Ang II- and OAG-evoked TRPC6 activity by about 2-fold. Depleters of tissue PIP2 wortmannin and LY294002 stimulated TRPC6 activity, as did the polycation PIP2 scavenger poly-l-lysine. Wortmannin reduced Ang II-evoked TRPC6 activity by over 75% but increased OAG-induced TRPC6 activity by over 50-fold. Co-immunoprecipitation studies demonstrated association between PIP2 and TRPC6 proteins in tissue lysates. Pre-treatment with Ang II, OAG and wortmannin reduced TRPC6 association with PIP2. These results provide for the first time compelling evidence that constitutively produced PIP2 exerts a powerful inhibitory action on native TRPC6 channels

    The Community Climate System Model version 3 (CCSM3)

    Get PDF
    Author Posting. © American Meteorological Society 2006. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 19 (2006): 2122–2143, doi:10.1175/JCLI3761.1.The Community Climate System Model version 3 (CCSM3) has recently been developed and released to the climate community. CCSM3 is a coupled climate model with components representing the atmosphere, ocean, sea ice, and land surface connected by a flux coupler. CCSM3 is designed to produce realistic simulations over a wide range of spatial resolutions, enabling inexpensive simulations lasting several millennia or detailed studies of continental-scale dynamics, variability, and climate change. This paper will show results from the configuration used for climate-change simulations with a T85 grid for the atmosphere and land and a grid with approximately 1° resolution for the ocean and sea ice. The new system incorporates several significant improvements in the physical parameterizations. The enhancements in the model physics are designed to reduce or eliminate several systematic biases in the mean climate produced by previous editions of CCSM. These include new treatments of cloud processes, aerosol radiative forcing, land–atmosphere fluxes, ocean mixed layer processes, and sea ice dynamics. There are significant improvements in the sea ice thickness, polar radiation budgets, tropical sea surface temperatures, and cloud radiative effects. CCSM3 can produce stable climate simulations of millennial duration without ad hoc adjustments to the fluxes exchanged among the component models. Nonetheless, there are still systematic biases in the ocean–atmosphere fluxes in coastal regions west of continents, the spectrum of ENSO variability, the spatial distribution of precipitation in the tropical oceans, and continental precipitation and surface air temperatures. Work is under way to extend CCSM to a more accurate and comprehensive model of the earth's climate system.We would like to acknowledge the substantial contributions to and support for the CCSM project from the National Science Foundation (NSF), the Department of Energy (DOE), the National Oceanic and Atmospheric Administration, and the National Aeronautics and Space Administration

    Climate Process Team on internal wave–driven ocean mixing

    Get PDF
    Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 98 (2017): 2429-2454, doi:10.1175/BAMS-D-16-0030.1.Diapycnal mixing plays a primary role in the thermodynamic balance of the ocean and, consequently, in oceanic heat and carbon uptake and storage. Though observed mixing rates are on average consistent with values required by inverse models, recent attention has focused on the dramatic spatial variability, spanning several orders of magnitude, of mixing rates in both the upper and deep ocean. Away from ocean boundaries, the spatiotemporal patterns of mixing are largely driven by the geography of generation, propagation, and dissipation of internal waves, which supply much of the power for turbulent mixing. Over the last 5 years and under the auspices of U.S. Climate Variability and Predictability Program (CLIVAR), a National Science Foundation (NSF)- and National Oceanic and Atmospheric Administration (NOAA)-supported Climate Process Team has been engaged in developing, implementing, and testing dynamics-based parameterizations for internal wave–driven turbulent mixing in global ocean models. The work has primarily focused on turbulence 1) near sites of internal tide generation, 2) in the upper ocean related to wind-generated near inertial motions, 3) due to internal lee waves generated by low-frequency mesoscale flows over topography, and 4) at ocean margins. Here, we review recent progress, describe the tools developed, and discuss future directions.We are grateful to U.S. CLIVAR for their leadership in instigating and facilitating the Climate Process Team program. We are indebted to NSF and NOAA for sponsoring the CPT series.2018-06-0

    Climate Process Team on Internal-Wave Driven Ocean Mixing

    Get PDF
    Diapycnal mixing plays a primary role in the thermodynamic balance of the ocean, and consequently, in oceanic heat and carbon uptake and storage. Though observed mixing rates are on average consistent with values required by inverse models, recent attention has focused on the dramatic spatial variability, spanning several orders of magnitude, of mixing rates in both the upper and deep ocean. Climate models have been shown to be very sensitive not only to the overall level but to the detailed distribution of mixing; sub-grid-scale parameterizations based on accurate physical processes will allow model forecasts to evolve with a changing climate. Spatio-temporal patterns of mixing are largely driven by the geography of generation, propagation and destruction of internal waves, which are thought to supply much of the power for turbulent mixing. Over the last five years and under the auspices of US CLIVAR, a NSF and NOAA supported Climate Process Team has been engaged in developing, implementing and testing dynamics-base parameterizations for internal-wave driven turbulent mixing in global ocean models. The work has primarily focused on turbulence 1) near sites of internal tide generation, 2) in the upper ocean related to wind-generated near inertial motions, 3) due to internal lee waves generated by low-frequency mesoscale flows over topography, and 4) at ocean margins. Here we review recent progress, describe the tools developed, and discuss future directions

    In Vivo Entombment of Bacteria and Fungi during Calcium Oxalate, Brushite, and Struvite Urolithiasis

    Get PDF
    Background: Human kidney stones form via repeated events of mineral precipitation, partial dissolution, and reprecipitation, which are directly analogous to similar processes in other natural and manmade environments, where resident microbiomes strongly influence biomineralization. High-resolution microscopy and high-fidelity metagenomic (microscopy-to-omics) analyses, applicable to all forms of biomineralization, have been applied to assemble definitive evidence of in vivo microbiome entombment during urolithiasis. Methods: Stone fragments were collected from a randomly chosen cohort of 20 patients using standard percutaneous nephrolithotomy (PCNL). Fourier transform infrared (FTIR) spectroscopy indicated that 18 of these patients were calcium oxalate (CaOx) stone formers, whereas one patient formed each formed brushite and struvite stones. This apportionment is consistent with global stone mineralogy distributions. Stone fragments from seven of these 20 patients (five CaOx, one brushite, and one struvite) were thin sectioned and analyzed using brightfield (BF), polarization (POL), confocal, super-resolution autofluorescence (SRAF), and Raman techniques. DNA from remaining fragments, grouped according to each of the 20 patients, were analyzed with amplicon sequencing of 16S rRNA gene sequences (V1-V3, V3-V5) and internal transcribed spacer (ITS1, ITS2) regions. Results: Bulk-entombed DNA was sequenced from stone fragments in 11 of the 18 patients who formed CaOx stones, and the patients who formed brushite and struvite stones. These analyses confirmed the presence of an entombed low-diversity community of bacteria and fungi, including Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria, and Aspergillus niger. Bacterial cells approximately 1 μm in diameter were also optically observed to be entombed and well preserved in amorphous hydroxyapatite spherules and fans of needle-like crystals of brushite and struvite. Conclusions: These results indicate a microbiome is entombed during in vivo CaOx stone formation. Similar processes are implied for brushite and struvite stones. This evidence lays the groundwork for future in vitro and in vivo experimentation to determine how the microbiome may actively and/or passively influence kidney stone biomineralization

    NGF effects on developing forebrain cholinergic neurons are regionally specific

    Full text link
    Nerve growth factor (NGF) has been shown to have an effect on neurons in the central nervous system (CNS). A number of observations suggest that NGF acts as a trophic factor for cholinergic neurons of the basal forebrain and the caudate-putamen. We sought to further characterize the CNS actions of NGF by examining its effect on choline acetyltransferase (ChAT) activity in the cell bodies and fibers of developing neurons of the septum and caudate-putamen. ChAT activity was increased after even a single NGF injection. Interestingly, the magnitude of the effect of multiple NGF injections suggested that repeated treatments may augment NGF actions on these neurons. The time-course of the response to NGF was followed after a single injection on postnatal day (PD) 2. NGF treatment produced long-lasting increases in ChAT activity in septum, hippocampus and caudate-putamen. The response in cell body regions (septum, caudate-putamen) was characterized by an initial lag period of approximately 24 hr, a rapid rise to maximum values, a plateau phase and a return to baseline. The response in hippocampus was delayed by 48 hr relative to that in septum, indicating that NGF actions on ChAT were first registered in septal cell bodies. Finally, developmental events were shown to have a regionally specific influence on the response of neurons to NGF. For though the septal response to a single NGF injection was undiminished well into the third postnatal week, little or no response was detected in caudate-putamen at that time. In highlighting the potency and regional specificity of NGF effects, these observations provide additional, support for the hypothesis that NGF is a trophic factor for CNS cholinergic neurons.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45403/1/11064_2004_Article_BF00970927.pd
    • …
    corecore