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Abstract
Background Human kidney stones form via repeated events of mineral precipitation, partial dissolution, and
reprecipitation, which are directly analogous to similar processes in other natural and manmade environments,
where resident microbiomes strongly influence biomineralization. High-resolution microscopy and high-fidelity
metagenomic (microscopy-to-omics) analyses, applicable to all forms of biomineralization, have been applied to
assemble definitive evidence of in vivo microbiome entombment during urolithiasis.

Methods Stone fragments were collected from a randomly chosen cohort of 20 patients using standard percu-
taneous nephrolithotomy (PCNL). Fourier transform infrared (FTIR) spectroscopy indicated that 18 of these
patients were calcium oxalate (CaOx) stone formers, whereas one patient formed each formed brushite and
struvite stones. This apportionment is consistent with global stone mineralogy distributions. Stone fragments
from seven of these 20 patients (five CaOx, one brushite, and one struvite) were thin sectioned and analyzed using
brightfield (BF), polarization (POL), confocal, super-resolution autofluorescence (SRAF), and Raman techniques.
DNA from remaining fragments, grouped according to each of the 20 patients, were analyzed with amplicon
sequencing of 16S rRNA gene sequences (V1–V3, V3–V5) and internal transcribed spacer (ITS1, ITS2) regions.

Results Bulk-entombed DNA was sequenced from stone fragments in 11 of the 18 patients who formed CaOx
stones, and the patients who formed brushite and struvite stones. These analyses confirmed the presence of an
entombed low-diversity community of bacteria and fungi, including Actinobacteria, Bacteroidetes, Firmicutes,
Proteobacteria, andAspergillus niger. Bacterial cells approximately 1mm in diameter were also optically observed to
be entombed and well preserved in amorphous hydroxyapatite spherules and fans of needle-like crystals of
brushite and struvite.

Conclusions These results indicate a microbiome is entombed during in vivo CaOx stone formation. Similar
processes are implied for brushite and struvite stones. This evidence lays the groundwork for future in vitro and in
vivo experimentation to determine how the microbiome may actively and/or passively influence kidney stone
biomineralization.
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Introduction
Calcium-rich human kidney stones composed of the
minerals calcium oxalate (CaOx, CaC2O4), calcium
phosphate (hydroxyapatite Ca10[PO4]6[OH]2), and

brushite (CaHPO4) are the most common products
globally of urolithiasis in industrialized nations
(1). Integrated approaches from geology, biology,
and medicine to study universal biomineralization
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in humans, animals, and plants, called GeoBioMed, has re-
cently shown these kidney stones are formed via repeated
events of precipitation, partial dissolution, and reprecipita-
tion (2,3). Each of these biomineralization steps is promoted
and/or inhibited by a variety of physical, chemical, and
biologic processes and mechanisms (4). Importantly, the
deposition of minerals that form human kidney stones (5)
is directly comparable to biomineralization processes in
other natural and manmade environments (6), all of which
are strongly influenced by microorganisms (collectively
called the microbiome) (7). For example, in hot-spring cal-
cium carbonate (CaCO3) travertine deposits, bacteria con-
trol mineral growth rate, mineralogy, and crystalline struc-
ture (6). Additionally, fungi excrete a number of organic
acids (e.g., citric, oxalic, and formic acids, among many
others) that drive limestone dissolution and reprecipitation
in both natural and manmade settings (8). Similar types of
microbe-urine-mineral interactions are thought to influence
human kidney stone formation (5). For instance, previous

microbial culturing and 16S rRNA gene sequencing from
human kidney stones have detected both bacteria and fungi
(9–12). As another example, oxalate-metabolizing bacterial
networks in the gut microbiome have also been identified as
a contributing factor to hyperoxaluria and the simultaneous
formation of CaOx kidney stones (13). Furthermore, struvite
stones have been shown to be influenced by the metabolic
activity of urease-producing bacteria (14).
Given this background, this study has integrated optical

microscopy with metagenomic analyses (herein called mi-
croscopy-to-omics) to collect definitive direct evidence of in
vivo microbiome diversity, entombment, and preservation
during human kidney stone formation. This project was
undertaken to analyze stone fragments collected from a ran-
domly chosen cohort of 20 patients using standard percu-
taneous nephrolithotomy. This experimental design
requires that analytical results from all 20 patients be pre-
sented, which included 18 CaOx stone formers, one CaHPO4

stone former, and one struvite stone former. The relatively
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Figure 1. | Study flow. A total of 20 patients consented and enrolled in the study. Mineralogies analyzed in this study include calcium oxalate
(CaOx) (n518 patients), struvite (n51 patient), and brushite (n51 patient). After filtering reads through pipelines for quality, preprocessing, and
contamination, *16S rRNA gene sequences (V3–V5 hypervariable region) were detected in nine out of 20 patients (45%), whereas internal
transcribed spacer †internal transcribed spacer 2 (ITS2) sequences were detected in 11 out of 20 patients (55%). PCNL, percutaneous
nephrolithotomy; IR, infrared.
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large number of patients who formed CaOx stones has
permitted conclusive interpretations to be drawn regarding
in vivo microbiome diversity, entombment, and preserva-
tion. In contrast, the small number of patients who form
CaHPO4 and struvite stones prevents similarly conclusive
characterizations. However, their microscopy-to-omics
analyses are nonetheless extremely valuable, and serve as
a useful pilot study comparison with previously published
microbiome analyses of CaOx, CaHPO4, and struvite kidney
stone fragments. Similar applications of microscopy-to-
omics analyses, aided by comparisons with biomineraliza-
tion in other natural and manmade environments, can be
used to design future in vitro and in vivo experimentation
dedicated to finding new therapeutic interventions for the
prevention and treatment of urolithiasis.

Materials and Methods
The methods used in this study are briefly summarized

here and presented in detail in the Supplemental Materials.
This includes a flow chart of the systematic analyses applied
in this study (Figure 1). Kidney stone fragments were col-
lected from a cohort of 20 randomly chosen patients at the
Mayo Clinic (Supplemental Table 1). All patients received
antibiotics for a minimum of 7 days before surgery. Medical
history, standard serum labs, medication intake, and comor-
bid conditions were assessed. In addition, 24-hour urine
supersaturation profiles were obtained from all patients
after surgery (Supplemental Table 2). To collect enough
entombed microbial DNA, multiple stone fragments were
grouped from each patient, washed in deionized water, air
dried, and analyzed for bulk mineralogic composition using
Fourier Transform Infrared Spectroscopy at the Mayo Clinic
Metals Laboratories (Supplemental Table 3). Subsets from
seven of the patient-specific fragment groups (five
CaOx, one CaHPO4, one struvite; Figure 1) were
three-dimensionally oriented, impregnated with epoxy,
and made into 25 mm thick, doubly polished, uncovered
thin section by Wagner Petrographic (Lindon, Utah) (3).
Thin section microscopy analyses were carried out in the
Microscopy Core of the Carl R. Woese Institute for Genomic
Biology on a Zeiss Axio Zoom.V16, a Zeiss Axio Observer
Widefield System, a Zeiss LSM 880 Laser Scanning Micro-
scope with Airyscan Superresolution, and a WITec Alpha
300RAS Raman System.
Another subset of each of the 20 patient-specific kidney

stone fragment groups were collected for metagenomic
analyses by flash freezing in the operating room immedi-
ately after standard percutaneous nephrolithotomy collec-
tion via placement in a 280°C Taylor-Wharton CX Series
dry shipper dewar (Borehamwood, UK). The dewar was
shipped overnight to the Carl R. Woese Institute for Geno-
mic Biology, where the fragment cohorts were stored at
280°C until analyzed. Thawed fragment groups were pow-
dered with a sterilized mortar and pestle under a sterile
laminar flow hood. Molecular sequencing and bioinformatic
analysis of the V1–V3 and V3–V5 hypervariable regions of
bacterial 16S rRNA gene sequences, human host nonribo-
somal DNA fragments, and fungal internal transcribed
spacer (ITS) regions (ITS1 and ITS2) were conducted
in the Roy J. Carver Biotechnology Center. The 16S
rRNA gene sequences and ITS regions were analyzed

on a Fluidigm system. Paired-end sequencing was com-
pleted on an Illumina MiSeq platform. Amplicon sequence
variants (ASVs) in control samples were identified as con-
taminants and removed. Phylogenetic diversity analysis
and statistical analyses were completed using the Phyloseq
v1.22.3 (15) and R programs (16). Statistical correlations
were assessed using Wilcoxon signed-rank and Fisher’s
exact test.

Ethics Approval and Consent to Participate
This basic medical research study was reviewed and

approved by the Institutional Review Board (09–002083)
at the Mayo Clinic. Written informed consent was obtained
from all participants and are on file with the Mayo Clinic in
Rochester, Minnesota.

Availability of Data and Materials
The raw metagenomic sequencing data and other raw

images and finalized images can be retrieved from the
following link.

https://uofi.box.com/s/
czaik83my8srldzo9qd3mhp7zygn3s87

Kidney stone fragment thin sections and all data curation
is available from Dr. Mayandi Sivaguru.

Results
Entombment of Bacterial, Fungal, and Human Host
Amplicon Sequences
The V1–V3 and V3–V5 hypervariable regions of bacterial

16S rRNA gene sequences and human host nonribosomal
DNA fragments were detected in nine out of 20 patient-
specific kidney stone fragment groups (seven CaOx, one
CaHPO4, one struvite; Figures 1 and 2A, Supplemental
Figures 1 and 2). From these, a total of 214 unique ASVs
were identified (Figure 2A, Supplemental Table 4). Host
human nonribosomal DNA sequences were dominant in
four of the seven CaOx fragment groups (Figure 3A, Sup-
plemental Figure 1). In the CaHPO4 stone fragment group,
99.5% of the total sequence reads were classified as host
human nonribosomal DNA sequences (Figure 3C). Con-
versely, no host human nonribosomal DNA was detected
in the struvite fragment group (Figure 3E). The 40 unique
ASVs identified in the struvite fragment group were slightly
more diverse than those detected in the CaOx and CaHPO4

fragment groups (Shannon Index 0.84, Simpson Index 0.35).
The struvite fragment group bacterial community compo-
sition was dominated by Staphylococcus (80% of reads,
Figure 3E) and included Porphyromonas (7%), Abiotrophia
(6%), and Haemophilus (2%). Fungal amplicon sequences
were detected in 11 out of 20 fragment groups (nine CaOx,
one CaHPO4; one struvite; Figures 1 and 2B, Supplemental
Figure 3). ASVs attained from all stone fragment groups
were predominantlyAspergillus niger, with the remaining 36
ASVs affiliated with Aspergillus, Basidiomycota, and Agari-
comycetes. In addition, Aspergillus nomius, Aspergillus costar-
icensis, Candida albicans, Candida dubliniensis, and Dothidea-
ceae (family-level) constituted ,1% of the total community
(Figure 3, B, D, and F; Supplemental Figures 2 and 4).
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Microbiome Partitioning between Stone Mineralogy Types
The 18 patients that formed CaOx kidney stone fragment

groups permit firm conclusions to be drawn with respect to
in vivo microbiome diversity, entombment, and preserva-
tion. However, the single CaHPO4 and struvite fragment
groups permit only pilot study–level initial comparison
with the CaOx fragment groups. The CaOx, CaHPO4,
and struvite fragment groups each contain significantly
different entombed bacterial communities (Figure 2C). Bac-
teria in the CaHPO4 fragment group share only one taxa
(Staphylococcus) with the CaOx and struvite fragment
groups. Additionally, host nonribosomal DNA was identi-
fied in the CaOx and CaHPO4 fragment groups, but not in
the struvite fragment group (Figure 2C). Fungal commu-
nities exhibited more overlap among the three CaOx,
CaHPO4, and struvite fragment group mineralogy types
(Figure 2C). A. niger dominated the fungal communities of
all three fragment mineralogy types, whereas A. nomius
constituted ,1% of these fungal communities. CaOx and

struvite fragment groups shared Aspergillus, whereas the
CaOx and CaHPO4 fragment groups shared Agaricomycetes.

Correlation of Fungal Microbiomewith Urinary Calcium and
Oxalate Excretion
The 11 patient-specific kidney stone fragment groups

containing fungal sequences do not exhibit statistically sig-
nificant correlations with higher patient urine calcium ex-
cretion at the a50.05 level (Figure 4A; P50.07). However,
mean calcium concentrations in 24-hour urine analyses are
higher in the presence of fungal sequences (“absent” mean
5 180.3 mg/24 hour; “present” mean 5 308.8 mg/24 hour;
Figure 4A). Similarly, there were no statistically significant
correlations observed between the presence and absence of
fungal sequences and urine oxalate concentrations
(Figure 4B; P50.15). However, patients with fungal sequen-
ces in their stone fragment groups exhibited lower mean
urine oxalate concentrations (20.2 mg/24 hour) than patients
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without fungal sequences (33.0 mg/24 hour). Patient-specific
fragment groups with fungal sequences also exhibited statis-
tically insignificant (P50.33) increases in average 24-hour urine
CaOx saturation indices (1.6 Delta Gibbs Free Energy/24 hour
without; 2.0 Delta Gibbs Free Energy/24 hour with). Addi-
tionally, there was no statistically significant correlation be-
tween the presence or absence of fungal sequences and patient
24-hour urine citrate levels (P50.4). Finally, the presence or
absence of apatite in each patient-specific fragment group
correlates with the presence of fungal sequences (P50.02; odds
ratio, 0.05; 95% confidence interval, 0 to 0.65).

Microbiome Entombment within Amorphous and Crystalline
Minerals
Microscopy was completed on five CaOx, one CaHPO4,

and one struvite patient-specific kidney stone fragment.

Whereas bacteria and fungi were detected in the metage-
nomic analyses for the CaOx stone fragments (Figure 3),
neither entombed bacterial cells or fungal hyphae borings
were observed with microscopy. It is important to note that
metagenomic analyses result from a significantly higher
volume coverage of each of the patient-specific stone frag-
ment groups, and are therefore expected to yield more
evidence of an entombed microbiome than the small
25 mm thick cross-sectional area investigated by thin section
microscopy analyses. Conversely, CaHPO4 and struvite stone
fragments contained both bacterial and fungal metagenomic
sequences (Figure 3). Although they clearly exhibited entom-
bed bacterial cells within their amorphous spherulitic hy-
droxyapatite (Figures 5–8, Supplemental Figure 4), no fun-
gal hyphae were observed. In the struvite stone fragment,
concentrically layered amorphous hydroxyapatite spherules
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Figure 5. | Microscopy evidence of microorganism entombment within human kidney stones.Mineralogical identifications determined with
a combination of bulk stone Fourier Transform Infrared (FTIR) analyses and determination of individual crystal morphologies (2) and Raman
spectroscopy (Figure 7) in thin sections. (A) transmitted light photomultiplier (TPMT), (B) super-resolution autofluorescence (SRAF), and (C)
TPMT overlaid on SRAF image from a struvite kidney stone documenting entombed bright orange autofluorescent coccoidal and rod-shaped
bacterial cells. See also Supplemental Figure 5 for contextualization of the occurrence of both coccoidal and rod-shaped bacteria in sur-
rounding regions of the thin section.
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and radiating needle-like (acicular) struvite crystals con-
tain entombed coccoid- and rod-shaped bacteria approx-
imately 1 mm in diameter (Figures 5 and 6). Similarly, the
CaHPO4 fragment contained entombed bacteria within
concentrically layered amorphous hydroxyapatite spherules

and radiating acicular CaHPO4 crystals (Figures 6, E and F
and 8). In addition, Raman spectroscopy has identified
entombed organic biomolecules, including lipids and pro-
teins, and confirmed that amorphous spherules are com-
prised of hydroxyapatite (Figure 7).

Figure 6. | Evidence for bacteria entombed within struvite and brushite kidney stones. Mineralogical identifications determined with
a combination of bulk stone Fourier Transform Infrared (FTIR) analyses and determination of individual crystal morphologies (2) and Raman
spectroscopy (Figure 7) in thin sections. (A) Color brightfield (BF) image of a 25mm thin section prepared from a struvite stone. (B) The same field
of view as in a indicating that concentrically layered spherulitic hydroxyapatite exhibits extinction under polarized light (POL) and are therefore
amorphous (non-crystalline). Conversely, the radiating needle-like (acicular) crystals of struvite are strongly birefringent. (C) Color BF image of
enlargement box shown in (A). White arrows in (C and D) indicate cross-sections at various oblique angles of entombed coccoidal and rod-
shaped bacteria. (D) Super-resolution autofluorescence (SRAF) image of the same field of view shown in (C). (E) BF image of polymorphic
twinning of radiating acicular brushite crystals. This is an approximately 600 nm thick slice in reflection mode, therefore not all BF objects are
not in focus. White arrows in (E and F) indicate cross-sections at various oblique angles of entombed coccoidal and rod-shaped bacteria. (F)
SRAF image of the same field of view shown in (E). Regions of blurred (fuzzy) concentric zonations represent regions of mimetic dissolution and
replacement (2,4).
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Discussion
Phylogenetic Diversity of the Entombed In VivoMicrobiome
The microscopy-to-omics analyses assembled in this

study provide important microscopy and genomic
evidence of entombment of a low-diversity community of

microorganisms during in vivo CaOx stone formation (Figures
2 and 3). Optical and genomic evidence in this pilot study
analyses of the CaHPO4 and struvite patient-specific kidney
stone fragments show similar processes are implied
for CaHPO4 and struvite stones (Figures 2–8). The
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Figure 7. | Raman spectroscopy evidence for entombed bacteria within a struvite (NH4MgPO40.6H2O) human kidney stone. (A–C) Mineral
component 1 (A, pseudo-colored red), mineral component 2 (B, pseudo-colored blue), and the corresponding merged images extracted from
Raman spectra (C). (D) Transparent overlay of image (C) on a lower magnification color brightfield (BF) image illustrating optical microscopy
correlatedwith Raman spectroscopy. (E) Raman spectra formineral components 1 (A) and 2 (B), with legends highlighting chemical components
for identified peaks on the basis of Takasaki (Supplemental Reference 11) and Balan et al. (Supplemental Reference 12). (F–J) Enlargement of box
in (D) similar to Figure 5C but with high magnification Raman scan pseudo-colored red for hydroxyapatite Ca10(PO4)6(OH2) and green for
struvite. Note the 959 peak (italicized in J) is the “high” peak for hydroxyapatite among the other peaks. Also note the similarity between struvite
peaks in (E) (larger field of view) and (J) (smaller field of view).
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human microbiome, in combination with both genetic and
environmental factors, has been implicated as playing an
important role in urolithiasis (5,17–19). This is supported by
several previous studies using both culturing and sequenc-
ing techniques that have detected a microbiome within

CaOx stones (10–12), CaHPO4 stones (12), struvite stones
(14), and urine (12,20).
Staphylococcuswas detected in both this study (Figure 3A)

and previous analyses of CaOx stone fragments (10–12).
However, no overlap was observed in bacterial diversity

Figure 8. | Microscopy evidence for entombed bacteria in brushite human kidney stones. (A) Color brightfield (BF) image of a 25 mm thin
section prepared from a brushite stone. (B) Same field of view as in a indicating that concentrically layered spherules exhibit extinction under
polarized light (POL) and are therefore amorphous (noncrystalline;white arrows). Conversely, the radiating acicular crystals of brushite (white
box in B, see also Figure 5, E and F) are strongly birefringent. Inset in lower right in (B) is a transmitted light photomultiplier (TPMT) image of
spherules with entombed coccoidal and rod-shaped bacteria throughout each crystal (white arrows).White arrows in (B) indicate cross-sections
at various oblique angles of entombed coccoidal and rod-shaped bacteria.
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between this pilot study (Figure 3C) and previous studies of
CaHPO4 stone microbiology (12). Conversely, Pseudomonas
and Staphylococcus were found in common between this
pilot study (Figure 3E) and previous struvite stone analyses

(14). Pseudomonas, along with other microorganisms associ-
ated with urinary tract infections (e.g., Proteus, Klebsiella, and
yeast), produce ammonia and increase urine alkalinity
(pH.7), which ultimately form struvite infection stones
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Figure 9. | Microscopy-to-omics evidence formicrobiome entombment during biomineralization in natural environments. Images and figures
modified from previous publications (6,7). (A) A skeleton of the scleractinian coral Orbicella annularis from the leeward reef tract of Curaçao
exhibits extensive fungal hyphae and borings (white arrow) in brightfield (BF). (B) Phase contrast (PC) image of the same field of view shown in
(A). (C) Rapid growth and accretion of CaCO3 travertine at Mammoth Hot Springs in Yellowstone National Park is coated by and entombs
coccoidal, rod, and filaments of the bacterium Sulfurihydrogenibium yellowstonense. Amerged blue and red super-resolution autofluorescence
(SRAF) image (violet to red color) overlaid on a BF image. (D) Environmental scanning electronmicroscope (ESEM) of the same sample shown in
(C). (E) Phylogenetic diversity pie chart of the microbiome associated the deposition of hot spring travertine at Mammoth Hot Springs. (F)
Phylogenetic diversity pie chart of the microbiome entombed in all calcium oxalate (CaOx) kidney stones analyzed in this study.
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(14,21). In addition, this study identified fungal sequences
affiliated with Aspergillus and Candida preserved within
CaOx, CaHPO4, and struvite stone fragment groups (Fig-
ure 3, B, D, and F). This is the first amplicon gene sequencing
identification of fungi in these three mineralogies, and is
consistent with previous culturing studies that documented
Candida growth from powdered CaOx stone fragments (9).
It has also recently been observed that patients who are

idiopathic stone formers have developed an imbalance in
the normal healthy composition of the bacterial communi-
ties inhabiting the gut (dysbiosis) (17,19,22). These dysbiosis
studies have focused on gut microbiome networks that
include the oxalate-degrading anaerobic bacterium Oxala-
bacter formigenes, whose activity is strongly controlled by
changes in patient diet (19,23). The metabolic activity of
Oxalabacter formingenes causes oxalate degradation, which
decreases oxalate concentration in the serum to make intra-
tubular CaOx precipitation less likely (24,25). Alternatively,
enzymatic reactions might effectively degrade oxalate with-
out the presence of Oxalabacter formingenes, which would
similarly serve to decrease enteric hyperoxaluria (26–28). In
addition to CaOx stones, hypercalciuria and elevated urine
pH in CaHPO4 stones may also result from altered meta-
bolic activity of the gut microbiome (12,29).
Antibiotics, probiotics, and microbial transplants further

affect Oxalobacter formigenes colonization (17). Hyperoxalu-
ria and CaOx urine supersaturation have also been shown to
be attenuated by probiotic treatment (5,12,30). These studies
have led to the hypothesis that the gut microbiome (27) acts
as a metabolic modulator that directly influences CaOx
kidney stone formation, creating a connection within the
human body called the gut-kidney axis (19,31).

Biomineralization in Human Kidneys and Natural and
Manmade Environments
Microbial communities play a fundamental role in the

precipitation, dissolution, and recrystallization of phos-
phate, carbonate, and silicate biomineralization in natural
and manmade environments around the world (e.g., coral
reefs, hot springs, deep subsurfaces; Figure 9) (2). In these
settings, cell wall surfaces, extracellular polymeric substan-
ces, and other organic molecules produced and influenced
bymicrobial metabolism can act as direct surface controls on
the rate and composition of crystalline mineral growth (6).
In situ kinetic experiments in Yellowstone National Park
carbonate hot springs have demonstrated the physical cell
presence and biomolecules produced by living microorgan-
isms can more than double mineral precipitation rates com-
pared with when they are absent (32). These direct catalytic
influences (protein catalysis) can now be linked to microbial
gene targets identified by future microscopy-to-omics anal-
yses in kidney stones. Additionally, microbes also cause
dissolution across a wide range of rock types, most com-
monly via secretion of metabolic byproducts such as organic
acids and production of biofilms. These processes, which
make significant contributions to biogeochemical cycles in
everything from natural rock formation to building stone
degradation, have previously beenwell documented in both
field and controlled laboratory conditions (33). Overall,
microbially mediated mineral precipitation and dissolution
is ubiquitous around the world (6).

Initially, microbial populations are directly influenced by
the environmental conditions in which they live (34). How-
ever, microbial populations can also rise to control the
surrounding physical, chemical, and biologic environment
(6). Similar types of dynamic feedback may occur during
human kidney stone formation. This includes interactions
among kidney physiology, microbiome community struc-
ture, hydraulic properties, biogeochemical composition of
the urine (e.g., chemistry, temperature, pH, saturation, flow
rate, nutrient substrates), and the biomolecule composition
and reactivity of internal renal surfaces (e.g., tissues, stones,
biofilms) (3). Acting in concert, these key factors of the renal
environment will affect numerous aspects of kidney stone
formation, including stone crystalline architecture, miner-
alogy, rate of crystallization, and timing and extent disso-
lution. As a result, microbiome-driven biomineralization
and dissolution processes within the human kidney likely
play a significant role in kidney stone formation. These
insights can now be utilized to generate new testable hy-
potheses for mechanisms of the microbially mediated dia-
genetic phase transitions that may be intimately involved in
kidney stone formation.
Microbial communities can play vitally important roles in

the bulk concentration of ions (e.g., changes in fluid urine
chemistry and kidney stone mineralogy and crystallogra-
phy) that may in turn modify nucleation, crystallization,
aggregation, and dissolution during the overall history of
stone growth (2,3). An example of this is struvite stone
formation, which has already been shown to be due to
the effects of urine alkalinity generated by the metabolic
activity of urease-producing bacteria (14). The similarities
between kidney stones and rocks in the natural environ-
ment, as revealed in this study and previous studies, can
now be used to develop new hypotheses regarding their
formation. For example, the partitioning of fungal and
bacterial communities between CaOx, CaHPO4, and stru-
vite stone types is analogous to that found in many other
natural rock formations, such as hot spring travertine (6)
and marine coral skeletons (Figure 9) (35). As another ex-
ample, kidney stones contain entombed organic matrices
(proteins, lipids, and glycosaminoglycans) that are derived
from the host human kidney, the microbiome, and urine
(36–38). Organic matrices entombed within mineral depos-
its are observed in many other common examples of bio-
mineralization, such as in human bones, coral reefs, and
pearls (39–42). These biomolecules will play a similarly
crucial role in both promotion and inhibition of crystal
growth and dissolution during kidney stone formation
(4,43). In the natural environment, fungal species such as
A. niger ubiquitously mediate diagenetic phase transitions
(44,45).These microscopy-to-omics results pave the way for
future experimentation, in which these hypotheses can be
systematically tested using highly controlled microfluidic
devices (4,46). For instance, microfluidic testbeds can be
used to quantitatively track the intermediate steps of kidney
stone formation in real time under high-resolution micros-
copy, as in recently published reports (2,3,46). This would
allow specific mechanisms and processes controlling kidney
stone growth and dissolution to be tested in the context of
microbiome community, phylogenetic diversity, functional
activity, and biochemistry. Examples include determination
of the extent to which Tamm-Horsfall and other proteins
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serve to promote or inhibit stone growth, while also eval-
uating its role in protecting the urinary tract and other
human organs from fungal infections (4,11,20,25). Other
experiments might include tracking stone growth rate, crys-
talline structure, and mineralogy while changing the micro-
biome to reflect actual urinary microbiome community di-
versity, structure, and metabolism (11,20,25). This could
include mimicking the dysbiosis observed in urine from
the renal calyx and bladder of calcium-based male stone
formers (11,20,25). The effect of all types of microbial imbal-
ances on kidney stone growth could therefore be tested,
including those resulting from changes in the gut and uri-
nary microbiome due to diet, lifestyle, and frequent antibi-
otic use (22,47).
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