68 research outputs found

    Das Graduiertenkolleg 1203 „Dynamik heißer Plasmen“

    Get PDF

    Experimental Observation of the Thin-Shell Instability in a Collision-less Plasma

    Get PDF
    We report on the experimental observation of the instability of a plasma shell, which formed during the expansion of a laser-ablated plasma into a rarefied ambient medium. By means of a proton radiography technique, the evolution of the instability is temporally and spatially resolved on a timescale much shorter than the hydrodynamic one. The density of the thin shell exceeds that of the surrounding plasma, which lets electrons diffuse outward. An ambipolar electric field grows on both sides of the thin shell that is antiparallel to the density gradient. Ripples in the thin shell result in a spatially varying balance between the thermal pressure force mediated by this field and the ram pressure force that is exerted on it by the inflowing plasma. This mismatch amplifies the ripples by the same mechanism that drives the hydrodynamic nonlinear thin-shell instability (NTSI). Our results thus constitute the first experimental verification that the NTSI can develop in colliding flows.Funding agencies: EPSRC [EP/I031766/1, EP/K022415/1, EP/I029206/1, SFB-TR18, GRK1203, ENE2013-45661-C2-1-P, PEII-2014-008-P]; Vetenskapsradet [Dnr 2010-4063]; Triangle de la Physique RTRA network (ULIMAC)</p

    Optimizing laser coupling, matter heating, and particle acceleration from solids using multiplexed ultraintense lasers

    Get PDF
    Realizing the full potential of ultrahigh-intensity lasers for particle and radiation generation will require multi-beam arrangements due to technology limitations. Here, we investigate how to optimize their coupling with solid targets. Experimentally, we show that overlapping two intense lasers in a mirror-like configuration onto a solid with a large preplasma can greatly improve the generation of hot electrons at the target front and ion acceleration at the target backside. The underlying mechanisms are analyzed through multidimensional particle-in-cell simulations, revealing that the self-induced magnetic fields driven by the two laser beams at the target front are susceptible to reconnection, which is one possible mechanism to boost electron energization. In addition, the resistive magnetic field generated during the transport of the hot electrons in the target bulk tends to improve their collimation. Our simulations also indicate that such effects can be further enhanced by overlapping more than two laser beams

    Efficient post-acceleration of protons in helical coil targets driven by sub-ps laser pulses

    Get PDF
    Abstract The characteristics of laser driven proton beams can be efficiently controlled and optimised by employing a recently developed helical coil technique, which exploits the transient self-charging of solid targets irradiated by intense laser pulses. Here we demonstrate a well collimated (<1° divergence) and narrow bandwidth (~10% energy spread) proton beamlet of ~107 particles at 10 ± 0.5 MeV obtained by irradiating helical coil targets with a few joules, sub-ps laser pulses at an intensity of ~2 × 1019 W cm−2. The experimental data are in good agreement with particle tracing simulations suggesting post-acceleration of protons inside the coil at a rate ~0.7 MeV/mm, which is comparable to the results obtained from a similar coil target irradiated by a fs class laser at an order of magnitude higher intensity, as reported in S. Kar et al., Nat. Commun, 7, 10792 (2016). The dynamics of hot electron escape from the laser irradiated target was studied numerically for these two irradiation regimes, which shows that the target self-charging can be optimised at a pulse duration of few hundreds of fs. This information is highly beneficial for maximising the post-acceleration gradient in future experiments

    Polarization measurement of laser-accelerated protons

    Get PDF
    We report on the successful use of a laser-driven few-MeV proton source to measure the differential cross section of a hadronic scattering reaction as well as on the measurement and simulation study of polarization observables of the laser-accelerated charged particle beams. These investigations were carried out with thin foil targets, illuminated by 100 TW laser pulses at the Arcturus laser facility; the polarization measurement is based on the spin dependence of hadronic proton scattering off nuclei in a Silicon target. We find proton beam polarizations consistent with zero magnitude which indicates that for these particular laser-target parameters the particle spins are not aligned by the strong magnetic fields inside the laser-generated plasma

    Guided post-acceleration of laser-driven ions by a miniature modular structure

    Get PDF
    All-optical approaches to particle acceleration are currently attracting a significant research effort internationally. Although characterized by exceptional transverse and longitudinal emittance, laser-driven ion beams currently have limitations in terms of peak ion energy, bandwidth of the energy spectrum and beam divergence. Here we introduce the concept of a versatile, miniature linear accelerating module, which, by employing laser-excited electromagnetic pulses directed along a helical path surrounding the laser-accelerated ion beams, addresses these shortcomings simultaneously. In a proof-of-principle experiment on a university-scale system, we demonstrate post-acceleration of laser-driven protons from a flat foil at a rate of 0.5 GeV m(−1), already beyond what can be sustained by conventional accelerator technologies, with dynamic beam collimation and energy selection. These results open up new opportunities for the development of extremely compact and cost-effective ion accelerators for both established and innovative applications

    Ultrafast Laser Driven Micro-Lens to Focus and Energy Select MeV Protons

    No full text
    International audienceWe present a technique for simultaneous focusing and energy selection of high-current, MeV proton beams using radial, transient electric fields (10 7-10 10 V/m) triggered on the inner walls of a hollow micro-cylinder by an intense, subpicosecond laser pulse. Due to the transient nature of the focusing fields, the proposed method allows selection of a desired range out of the spectrum of the polyenergetic proton beam. This technique addresses current drawbacks of laser accelerated proton beams, i.e. their broad spectrum and divergence at the source
    corecore