14 research outputs found
Comprehensive ECG reference intervals in C57BL/6N substrains provide a generalizable guide for cardiac electrophysiology studies in mice.
Reference ranges provide a powerful tool for diagnostic decision-making in clinical medicine and are enormously valuable for understanding normality in pre-clinical scientific research that uses in vivo models. As yet, there are no published reference ranges for electrocardiography (ECG) in the laboratory mouse. The first mouse-specific reference ranges for the assessment of electrical conduction are reported herein generated from an ECG dataset of unprecedented scale. International Mouse Phenotyping Consortium data from over 26,000 conscious or anesthetized C57BL/6N wildtype control mice were stratified by sex and age to develop robust ECG reference ranges. Interesting findings include that heart rate and key elements from the ECG waveform (RR-, PR-, ST-, QT-interval, QT corrected, and QRS complex) demonstrate minimal sexual dimorphism. As expected, anesthesia induces a decrease in heart rate and was shown for both inhalation (isoflurane) and injectable (tribromoethanol) anesthesia. In the absence of pharmacological, environmental, or genetic challenges, we did not observe major age-related ECG changes in C57BL/6N-inbred mice as the differences in the reference ranges of 12-week-old compared to 62-week-old mice were negligible. The generalizability of the C57BL/6N substrain reference ranges was demonstrated by comparison with ECG data from a wide range of non-IMPC studies. The close overlap in data from a wide range of mouse strains suggests that the C57BL/6N-based reference ranges can be used as a robust and comprehensive indicator of normality. We report a unique ECG reference resource of fundamental importance for any experimental study of cardiac function in mice
A many-analysts approach to the relation between religiosity and well-being
The relation between religiosity and well-being is one of the most researched topics in the psychology of religion, yet the directionality and robustness of the effect remains debated. Here, we adopted a many-analysts approach to assess the robustness of this relation based on a new cross-cultural dataset (N=10,535 participants from 24 countries). We recruited 120 analysis teams to investigate (1) whether religious people self-report higher well-being, and (2) whether the relation between religiosity and self-reported well-being depends on perceived cultural norms of religion (i.e., whether it is considered normal and desirable to be religious in a given country). In a two-stage procedure, the teams first created an analysis plan and then executed their planned analysis on the data. For the first research question, all but 3 teams reported positive effect sizes with credible/confidence intervals excluding zero (median reported ÎČ=0.120). For the second research question, this was the case for 65% of the teams (median reported ÎČ=0.039). While most teams applied (multilevel) linear regression models, there was considerable variability in the choice of items used to construct the independent variables, the dependent variable, and the included covariates
A Many-analysts Approach to the Relation Between Religiosity and Well-being
The relation between religiosity and well-being is one of the most researched topics in the psychology of religion, yet the directionality and robustness of the effect remains debated. Here, we adopted a many-analysts approach to assess the robustness of this relation based on a new cross-cultural dataset (N = 10, 535 participants from 24 countries). We recruited 120 analysis teams to investigate (1) whether religious people self-report higher well-being, and (2) whether the relation between religiosity and self-reported well-being depends on perceived cultural norms of religion (i.e., whether it is considered normal and desirable to be religious in a given country). In a two-stage procedure, the teams first created an analysis plan and then executed their planned analysis on the data. For the first research question, all but 3 teams reported positive effect sizes with credible/confidence intervals excluding zero (median reported ÎČ = 0.120). For the second research question, this was the case for 65% of the teams (median reported ÎČ = 0.039). While most teams applied (multilevel) linear regression models, there was considerable variability in the choice of items used to construct the independent variables, the dependent variable, and the included covariates
SARS-CoV-2 Omicron is an immune escape variant with an altered cell entry pathway
Vaccines based on the spike protein of SARS-CoV-2 are a cornerstone of the public health response to COVID-19. The emergence of hypermutated, increasingly transmissible variants of concern (VOCs) threaten this strategy. Omicron (B.1.1.529), the fifth VOC to be described, harbours multiple amino acid mutations in spike, half of which lie within the receptor-binding domain. Here we demonstrate substantial evasion of neutralization by Omicron BA.1 and BA.2 variants in vitro using sera from individuals vaccinated with ChAdOx1, BNT162b2 and mRNA-1273. These data were mirrored by a substantial reduction in real-world vaccine effectiveness that was partially restored by booster vaccination. The Omicron variants BA.1 and BA.2 did not induce cell syncytia in vitro and favoured a TMPRSS2-independent endosomal entry pathway, these phenotypes mapping to distinct regions of the spike protein. Impaired cell fusion was determined by the receptor-binding domain, while endosomal entry mapped to the S2 domain. Such marked changes in antigenicity and replicative biology may underlie the rapid global spread and altered pathogenicity of the Omicron variant
Characterising the evolving SARS-CoV-2 seroprevalence in urban and rural Malawi between February 2021 and April 2022: a population-based cohort study
Objectives: This study aimed to investigate the changing SARS-CoV-2 seroprevalence and associated health and sociodemographic factors in Malawi between February 2021 and April 2022. Methods: In total, four 3-monthly serosurveys were conducted within a longitudinal population-based cohort in rural Karonga District and urban Lilongwe, testing for SARS-CoV-2 S1 immunoglobulin (Ig)G antibodies using an enzyme-linked immunosorbent assay. Population seroprevalence was estimated in all and unvaccinated participants. Bayesian mixed-effects logistic models estimated the odds of seropositivity in the first survey, and of seroconversion between surveys, adjusting for age, sex, occupation, location, and assay sensitivity/specificity. Results: Of the 2005 participants (Karonga, n = 1005; Lilongwe, n = 1000), 55.8% were female and median age was 22.7 years. Between Surveys (SVY) 1 and 4, population-weighted SARS-CoV-2 seroprevalence increased from 26.3% to 89.2% and 46.4% to 93.9% in Karonga and Lilongwe, respectively. At SVY4, seroprevalence did not differ by COVID-19 vaccination status in adults, except for those aged 30+ years in Karonga (unvaccinated: 87.4%, 95% credible interval 79.3-93.0%; two doses: 98.1%, 94.8-99.5%). Location and age were associated with seroconversion risk. Individuals with hybrid immunity had higher SARS-CoV-2 seropositivity and antibody titers, than those infected. Conclusion: High SARS-CoV-2 seroprevalence combined with low morbidity and mortality indicate that universal vaccination is unnecessary at this stage of the pandemic, supporting change in national policy to target at-risk groups
Characterizing the evolving SARS-CoV-2 seroprevalence in urban and rural Malawi between February 2021 and April 2022 : a population-based cohort study
Objectives: This study aimed to investigate the changing SARS-CoV-2 seroprevalence and associated health and sociodemographic factors in Malawi between February 2021 and April 2022. Methods: In total, four 3-monthly serosurveys were conducted within a longitudinal population-based cohort in rural Karonga District and urban Lilongwe, testing for SARS-CoV-2 S1 immunoglobulin (Ig)G antibodies using an enzyme-linked immunosorbent assay. Population seroprevalence was estimated in all and unvaccinated participants. Bayesian mixed-effects logistic models estimated the odds of seropositivity in the first survey, and of seroconversion between surveys, adjusting for age, sex, occupation, location, and assay sensitivity/specificity. Results: Of the 2005 participants (Karonga, n = 1005; Lilongwe, n = 1000), 55.8% were female and median age was 22.7 years. Between Surveys (SVY) 1 and 4, population-weighted SARS-CoV-2 seroprevalence increased from 26.3% to 89.2% and 46.4% to 93.9% in Karonga and Lilongwe, respectively. At SVY4, seroprevalence did not differ by COVID-19 vaccination status in adults, except for those aged 30+ years in Karonga (unvaccinated: 87.4%, 95% credible interval 79.3-93.0%; two doses: 98.1%, 94.8-99.5%). Location and age were associated with seroconversion risk. Individuals with hybrid immunity had higher SARS-CoV-2 seropositivity and antibody titers, than those infected. Conclusion: High SARS-CoV-2 seroprevalence combined with low morbidity and mortality indicate that universal vaccination is unnecessary at this stage of the pandemic, supporting change in national policy to target at-risk groups
Extensive identification of genes involved in congenital and structural heart disorders and cardiomyopathy
Clinical presentation of congenital heart disease is heterogeneous, making identification of the disease-causing genes and their genetic pathways and mechanisms of action challenging. By using in vivo electrocardiography, transthoracic echocardiography and microcomputed tomography imaging to screen 3,894 single-gene-null mouse lines for structural and functional cardiac abnormalities, here we identify 705 lines with cardiac arrhythmia, myocardial hypertrophy and/or ventricular dilation. Among these 705 genes, 486 have not been previously associated with cardiac dysfunction in humans, and some of them represent variants of unknown relevance (VUR). Mice with mutations in Casz1, Dnajc18, Pde4dip, Rnf38 or Tmem161b genes show developmental cardiac structural abnormalities, with their human orthologs being categorized as VUR. Using UK Biobank data, we validate the importance of the DNAJC18 gene for cardiac homeostasis by showing that its loss of function is associated with altered left ventricular systolic function. Our results identify hundreds of previously unappreciated genes with potential function in congenital heart disease and suggest causal function of five VUR in congenital heart disease
Comprehensive ECG reference intervals in C57BL/6N substrains provide a generalizable guide for cardiac electrophysiology studies in mice
Reference ranges provide a powerful tool for diagnostic decision-making in clinical medicine and are enormously valuable for understanding normality in pre-clinical scientific research that uses in vivo models. As yet, there are no published reference ranges for electrocardiography (ECG) in the laboratory mouse. The first mouse-specific reference ranges for the assessment of electrical conduction are reported herein generated from an ECG dataset of unprecedented scale. International Mouse Phenotyping Consortium data from over 26,000 conscious or anesthetized C57BL/6N wildtype control mice were stratified by sex and age to develop robust ECG reference ranges. Interesting findings include that heart rate and key elements from the ECG waveform (RR-, PR-, ST-, QT-interval, QT corrected, and QRS complex) demonstrate minimal sexual dimorphism. As expected, anesthesia induces a decrease in heart rate and was shown for both inhalation (isoflurane) and injectable (tribromoethanol) anesthesia. In the absence of pharmacological, environmental, or genetic challenges, we did not observe major age-related ECG changes in C57BL/6N-inbred mice as the differences in the reference ranges of 12-week-old compared to 62-week-old mice were negligible. The generalizability of the C57BL/6N substrain reference ranges was demonstrated by comparison with ECG data from a wide range of non-IMPC studies. The close overlap in data from a wide range of mouse strains suggests that the C57BL/6N-based reference ranges can be used as a robust and comprehensive indicator of normality. We report a unique ECG reference resource of fundamental importance for any experimental study of cardiac function in mice.Y