675 research outputs found
Horizontal transfer of short and degraded DNA has evolutionary implications for microbes and eukaryotic sexual reproduction
Horizontal gene transfer in the form of long DNA fragments has changed our view of bacterial evolution. Recently, we discovered that such processes may also occur with the massive amounts of short and damaged DNA in the environment, and even with truly ancient DNA. Although it presently remains unclear how often it takes place in nature, horizontal gene transfer of short and damaged DNA opens up the possibility for genetic exchange across distinct species in both time and space. In this essay, we speculate on the potential evolutionary consequences of this phenomenon. We argue that it may challenge basic assumptions in evolutionary theory; that it may have distant origins in life's history; and that horizontal gene transfer should be viewed as an evolutionary strategy not only preceding but causally underpinning the evolution of sexual reproduction.No Full Tex
Environmental DNA - An emerging tool in conservation for monitoring past and present biodiversity
AbstractThe continuous decline in Earth’s biodiversity represents a major crisis and challenge for the 21st century, and there is international political agreement to slow down or halt this decline. The challenge is in large part impeded by the lack of knowledge on the state and distribution of biodiversity – especially since the majority of species on Earth are un-described by science. All conservation efforts to save biodiversity essentially depend on the monitoring of species and populations to obtain reliable distribution patterns and population size estimates. Such monitoring has traditionally relied on physical identification of species by visual surveys and counting of individuals. However, traditional monitoring techniques remain problematic due to difficulties associated with correct identification of cryptic species or juvenile life stages, a continuous decline in taxonomic expertise, non-standardized sampling, and the invasive nature of some survey techniques. Hence, there is urgent need for alternative and efficient techniques for large-scale biodiversity monitoring. Environmental DNA (eDNA) – defined here as: genetic material obtained directly from environmental samples (soil, sediment, water, etc.) without any obvious signs of biological source material – is an efficient, non-invasive and easy-to-standardize sampling approach. Coupled with sensitive, cost-efficient and ever-advancing DNA sequencing technology, it may be an appropriate candidate for the challenge of biodiversity monitoring. Environmental DNA has been obtained from ancient as well as modern samples and encompasses single species detection to analyses of ecosystems. The research on eDNA initiated in microbiology, recognizing that culture-based methods grossly misrepresent the microbial diversity in nature. Subsequently, as a method to assess the diversity of macro-organismal communities, eDNA was first analyzed in sediments, revealing DNA from extinct and extant animals and plants, but has since been obtained from various terrestrial and aquatic environmental samples. Results from eDNA approaches have provided valuable insights to the study of ancient environments and proven useful for monitoring contemporary biodiversity in terrestrial and aquatic ecosystems. In the future, we expect the eDNA-based approaches to move from single-marker analyses of species or communities to meta-genomic surveys of entire ecosystems to predict spatial and temporal biodiversity patterns. Such advances have applications for a range of biological, geological and environmental sciences. Here we review the achievements gained through analyses of eDNA from macro-organisms in a conservation context, and discuss its potential advantages and limitations for biodiversity monitoring
Transposable elements in cancer as a by-product of stress-induced evolvability
Transposable elements (TEs) are ubiquitous in eukaryotic genomes. Barbara McClintock's famous notion of TEs acting as controlling elements modifying the genetic response of an organism upon exposure to stressful environments has since been solidly supported in a series of model organisms. This requires the TE activity response to possess an element of specificity and be targeted towards certain parts of the genome. We propose that a similar TE response is present in human cells, and that this stress response may drive the onset of human cancers. As such, TE-driven cancers may be viewed as an evolutionary by-product of organisms' abilities to genetically adapt to environmental stress
Legal Fiction
While numerous ancient human DNA datasets from across Europe have been published till date, modern-day Poland in particular, remains uninvestigated. Besides application in the reconstruction of continent-wide human history, data from this region would also contribute towards our understanding of the history of the Slavs, whose origin is hypothesized to be in East or Central Europe. Here, we present the first population-scale ancient human DNA study from the region of modern-day Poland by establishing mitochondrial DNA profiles for 23 samples dated to 200 BC - 500 AD (Roman Iron Age) and for 20 samples dated to 1000-1400 AD (Medieval Age). Our results show that mitochondrial DNA sequences from both periods belong to haplogroups that are characteristic of contemporary West Eurasia. Haplotype sharing analysis indicates that majority of the ancient haplotypes are widespread in some modern Europeans, including Poles. Notably, the Roman Iron Age samples share more rare haplotypes with Central and Northeast Europeans, whereas the Medieval Age samples share more rare haplotypes with East-Central and South-East Europeans, primarily Slavic populations. Our data demonstrates genetic continuity of certain matrilineages (H5a1 and N1a1a2) in the area of present-day Poland from at least the Roman Iron Age until present. As such, the maternal gene pool of present-day Poles, Czechs and Slovaks, categorized as Western Slavs, is likely to have descended from inhabitants of East-Central Europe during the Roman Iron Age
Barking up the wrong tree: Modern northern European dogs fail to explain their origin
<p>Abstract</p> <p>Background</p> <p>Geographic distribution of the genetic diversity in domestic animals, particularly mitochondrial DNA, has often been used to infer centers of domestication. The underlying presumption is that phylogeographic patterns among domesticates were established during, or shortly after the domestication. Human activities are assumed not to have altered the haplogroup frequencies to any great extent. We studied this hypothesis by analyzing 24 mtDNA sequences in ancient Scandinavian dogs. Breeds originating in northern Europe are characterized by having a high frequency of mtDNA sequences belonging to a haplogroup rare in other populations (HgD). This has been suggested to indicate a possible origin of the haplogroup (perhaps even a separate domestication) in central or northern Europe.</p> <p>Results</p> <p>The sequences observed in the ancient samples do not include the haplogroup indicative for northern European breeds (HgD). Instead, several of them correspond to haplogroups that are uncommon in the region today and that are supposed to have Asian origin.</p> <p>Conclusion</p> <p>We find no evidence for local domestication. We conclude that interpretation of the processes responsible for current domestic haplogroup frequencies should be carried out with caution if based only on contemporary data. They do not only tell their own story, but also that of humans.</p
Improving access to endogenous DNA in ancient bones and teeth
Poor DNA preservation is the most limiting factor in ancient genomic research. In the majority of ancient bones and teeth, endogenous DNA molecules represent a minor fraction of the whole DNA extract, rendering shot-gun sequencing inefficient for obtaining genomic data. Based on ancient human bone samples from temperate and tropical environments, we show that an EDTA-based enzymatic ‘pre-digestion’ of powdered bone increases the proportion of endogenous DNA several fold. By performing the pre-digestion step between 30 min and 6 hours on five bones, we observe an asymptotic increase in endogenous DNA content, with a 2.7-fold average increase reached at 1 hour. We repeat the experiment using a brief pre-digestion (15 or 30 mins) on 21 ancient bones and teeth from a variety of archaeological contexts and observe an improvement in 16 of these. We here advocate the implementation of a brief pre-digestion step as a standard procedure in ancient DNA extractions. Finally, we demonstrate on 14 ancient teeth that by targeting the outer layer of the roots we obtain up to 14 times more endogenous DNA than when using the inner dentine. Our presented methods are likely to increase the proportion of ancient samples that are suitable for genome-scale characterization.Full Tex
Environmental DNA from seawater samples correlate with trawl catches of subarctic, deepwater fishes
Remote polar and deepwater fish faunas are under pressure from ongoing climate change and increasing fishing effort. However, these fish communities are difficult to monitor for logistic and financial reasons. Currently, monitoring of marine fishes largely relies on invasive techniques such as bottom trawling, and on official reporting of global catches, which can be unreliable. Thus, there is need for alternative and non-invasive techniques for qualitative and quantitative oceanic fish surveys. Here we report environmental DNA (eDNA) metabarcoding of seawater samples from continental slope depths in Southwest Greenland. We collected seawater samples at depths of 188-918 m and compared seawater eDNA to catch data from trawling. We used Illumina sequencing of PCR products to demonstrate that eDNA reads show equivalence to fishing catch data obtained from trawling. Twenty-six families were found with both trawling and eDNA, while three families were found only with eDNA and two families were found only with trawling. Key commercial fish species for Greenland were the most abundant species in both eDNA reads and biomass catch, and interpolation of eDNA abundances between sampling sites showed good correspondence with catch sizes. Environmental DNA sequence reads from the fish assemblages correlated with biomass and abundance data obtained from trawling. Interestingly, the Greenland shark (Somniosus microcephalus) showed high abundance of eDNA reads despite only a single specimen being caught, demonstrating the relevance of the eDNA approach for large species that can probably avoid bottom trawls in most cases. Quantitative detection of marine fish using eDNA remains to be tested further to ascertain whether this technique is able to yield credible results for routine application in fisheries. Nevertheless, our study demonstrates that eDNA reads can be used as a qualitative and quantitative proxy for marine fish assemblages in deepwater oceanic habitats. This relates directly to applied fisheries as well as to monitoring effects of ongoing climate change on marine biodiversity-especially in polar ecosystems
- …