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The continuous decline in Earth’s biodiversity represents a major crisis and challenge for the 21st
century, and there is international political agreement to slow down or halt this decline. The challenge
is in large part impeded by the lack of knowledge on the state and distribution of biodiversity – especially
since the majority of species on Earth are un-described by science. All conservation efforts to save biodi-
versity essentially depend on the monitoring of species and populations to obtain reliable distribution
patterns and population size estimates. Such monitoring has traditionally relied on physical identification
of species by visual surveys and counting of individuals. However, traditional monitoring techniques
remain problematic due to difficulties associated with correct identification of cryptic species or juvenile
life stages, a continuous decline in taxonomic expertise, non-standardized sampling, and the invasive
nature of some survey techniques. Hence, there is urgent need for alternative and efficient techniques
for large-scale biodiversity monitoring. Environmental DNA (eDNA) – defined here as: genetic material
obtained directly from environmental samples (soil, sediment, water, etc.) without any obvious signs of biolog-
ical source material – is an efficient, non-invasive and easy-to-standardize sampling approach. Coupled
with sensitive, cost-efficient and ever-advancing DNA sequencing technology, it may be an appropriate
candidate for the challenge of biodiversity monitoring. Environmental DNA has been obtained from
ancient as well as modern samples and encompasses single species detection to analyses of ecosystems.
The research on eDNA initiated in microbiology, recognizing that culture-based methods grossly
misrepresent the microbial diversity in nature. Subsequently, as a method to assess the diversity of
macro-organismal communities, eDNA was first analyzed in sediments, revealing DNA from extinct
and extant animals and plants, but has since been obtained from various terrestrial and aquatic environ-
mental samples. Results from eDNA approaches have provided valuable insights to the study of ancient
environments and proven useful for monitoring contemporary biodiversity in terrestrial and aquatic
ecosystems. In the future, we expect the eDNA-based approaches to move from single-marker analyses
of species or communities to meta-genomic surveys of entire ecosystems to predict spatial and temporal
biodiversity patterns. Such advances have applications for a range of biological, geological and
environmental sciences. Here we review the achievements gained through analyses of eDNA from
macro-organisms in a conservation context, and discuss its potential advantages and limitations for
biodiversity monitoring.
� 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The continuous decline in Earth’s biodiversity remains one of
the most critical challenges in the 21st century (Butchart et al.,
2010). Worldwide, populations of wild flora and fauna are being
depleted due to anthropogenic disturbances (Barnosky et al.,
2011; Dirzo et al., 2014) and species extinctions rates exceed those
of pre-human periods (Pimm et al., 1995; Barnosky et al., 2011),
which greatly impacts human health and sustainability of our pla-
net (Diaz et al., 2006). Although knowledge on biodiversity is
incomplete or even un-described for numerous taxa and geograph-
ical regions (Vié et al., 2009), there is international political agree-
ment to halt the current loss in biodiversity (UNEP, 2011). All such
conservation efforts to save biodiversity essentially depend on bio-
logical monitoring for obtaining precise data on species distribu-
tions and population sizes on a relevant ecological and political
time scale. Species monitoring has traditionally relied on physical
identification of species by, for example, visual surveys and count-
ing of individuals in the field using distinct morphological charac-
ters. However, in some cases these techniques fall short of actually
performing efficient and standardized surveys, due to, for example,
phenotypic plasticity and closely related species with very similar
appearance in juvenile stages. Thus, there are examples of species
databases flawed with errors (Daan, 2001). Additionally, tradi-
tional monitoring techniques have sometimes proven to be inva-
sive on the species or ecosystem under study, such as marine
surveys that has relied on highly destructive techniques (Baldwin
et al., 1996; Jones, 1992), although see Robertson and Smith-
Vaniz (2008). Furthermore, morphological identification is heavily
dependent on taxonomic expertise, which is often lacking or in
rapid decline (Hopkins and Freckleton, 2002; Wheeler et al.,
2004). All such limitations of traditional biodiversity monitoring
have created demand for alternative approaches.

Obtaining information of species, populations and communities
by retrieving DNA from environmental samples (environmental
DNA – eDNA) holds the potential of combating many of these chal-
lenges associated with biodiversity monitoring (Baird and
Hajibabaei, 2012; Kelly et al., 2014b). The fact that DNA from
higher organisms persists in the environment, where it can be
sampled, extracted and analyzed, has been a major technological
and scientific breakthrough within the last decade (Fig. 1). As spe-
cies interact with the environment, they will continuously expel
DNA to their surroundings. For higher organisms, this DNA may
come from excreted cells or tissue such as urine (e.g. Valiere and
Taberlet, 2000), faeces (e.g. Poinar et al., 1998), hairs and skin
(e.g. Bunce et al., 2005; Lydolph et al., 2005), and obviously from
dead individuals leaking genetic material. The macrobial eDNA
may in some systems exists predominantly inside mitochondria
or small cells (Turner et al., 2014), but owing to eventual mem-
brane degradation, extracellular DNA will also be present in the
environment (Nielsen et al., 2007). Once DNA is left in the environ-
ment, its preservation, and thus availability, varies with several
orders of magnitude from weeks in temperate water (Dejean
et al., 2011; Thomsen et al., 2012b) to hundreds of thousands of
years in cold, dry permafrost (e.g. Willerslev et al., 2003). Accord-
ingly, eDNA has been used to address applied and fundamental
research questions within areas ranging from molecular biology,
ecology, palaeontology and environmental sciences.

Within a single standardized sample, DNA from entire commu-
nities across taxonomic groups can potentially be analyzed simul-
taneously. The content of an eDNA sample is typically analyzed by
amplification using polymerase chain reaction (PCR) and subse-
quent DNA sequencing. The amplification is done either by a
single-species approach using specific primers or by multiple-
species (multiple-taxon) approach using generic primers for a
given focal group of organisms. Especially the fast advancing
next-generation sequencing (NGS) technologies has made compre-
hensive biodiversity surveys possible for limited effort and costs
(Shokralla et al., 2012). It has thus made the multiple-species eDNA
approach especially powerful by DNA metabarcoding – mass DNA
sequencing for the simultaneous molecular identification of
multiple taxa in a complex sample (Taberlet et al., 2012a).
Although similar in principle to classical DNA barcoding of simple
DNA extracts (Hebert et al., 2003), the practical approach and
target sequence is very different. While both rely on the fact that
short standardized DNA regions – typically mitochondrial, chloro-
plast or ribosomal RNA (rRNA) genes – can be amplified by PCR,
sequenced and subsequently used as barcodes to identify and dis-
criminate taxons, DNA metabarcoding cannot efficiently utilize
protein coding genes such as cytochrome oxidase I (COI), since
interspecific genetic variation impedes the use of universal primers
(Deagle et al., 2014). Also, proposed standardized DNA barcodes
are usually >500 bp and seem to reach consensus on the mitochon-
drial COI for animals (Hebert et al., 2003), the plastid ribulose 1,5-
bisphosphate carboxylase gene (rbcL) and the maturase K gene
(matK) for plants (Hollingsworth et al., 2009) and the internal tran-
scribed spacer (ITS) for fungi (Nilsson et al., 2009; Bellemain et al.,
2010; Schoch et al., 2012). These target genes have basically been
chosen due to their high resolution at the species level, but high
copy number per cell of mitochondria, chloroplasts and rRNA
genes also make them useful in eDNA studies, since they are more
likely to be picked up than single-copy nuclear DNA. However, as



Fig. 1. The overall workflow for environmental DNA (eDNA) studies with examples of organisms that have been identified from environmental samples. Environments and
their respective samplings from left to right: (i) glaciers; (ii) permafrost/tundra; (iii) aquatic sediments; (iv) lakes and streams; (v) terrestrial habitats; (vi) oceans. The first
three are ancient environments while the latter three are modern. Color codes of arrows represent the different steps in the analyses: (blue) environmental sampling (ice
cores, soil/sediment core samples, freshwater/seawater samples); (green) DNA extraction using procedures specific for the individual type of sample; (orange) PCR
amplification of extracted DNA using generic or species-specific primers targeting biodiversity and subsequent sequencing of amplicons (here shown as Illumina MiSeq
technology); (red) bioinformatic data-processing including error trimming, sequence sorting, and identification pipelines leading to various taxonomic level or MOTUs and
the final interpretation and publication of results. Drawing by Lars Holm.
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DNA from environmental samples, especially ancient samples, is
often fragmented (e.g. Deagle et al., 2006; Willerslev and Cooper,
2005), analyses must rely on shorter DNA fragments than the tra-
ditional defined barcoding regions (e.g. Taberlet et al., 2007; Riaz
et al., 2011; Epp et al., 2012). If DNA database coverage is low or
taxons are unknown, target sequences are typically clustered into
Molecular Operational Taxonomic Units (MOTUs). Yet, for less spe-
cies-rich groups in low-biodiversity areas, a much shorter barcode
sequence can prove informative at the species level, which permits
eDNA metabarcoding with high taxonomic resolution (Bienert
et al., 2012; Thomsen et al., 2012a).

Here we review and discuss the achievements of eDNA
approaches in ancient and contemporary ecosystems for describ-
ing past biodiversity and for use in practical present-day conserva-
tion, respectively. We focus this paper on eDNA from macro-
organisms (animals, plants and fungi) as they are the key target
in conservation. We define eDNA as: genetic material obtained
directly from environmental samples (soil, sediment, water, etc.) with-
out any obvious signs of biological source material. In order to keep
this focus, which is the topic of the current journal special issue,
we exclude related studies of other complex samples such as faecal
samples for assessment of biodiversity and diet content (e.g.
Pompanon et al., 2012; Schnell et al., 2012; Valentini et al.,
2009a) as well as analyses of arthropod bulk samples (e.g.
Calvignac-Spencer et al., 2013; Hajibabaei et al., 2011; Ji et al.,
2013), which apply very similar techniques and also have direct
applications for conservation. Environmental DNA as defined here
is thus an approach to obtain genetic material from the environ-
ment, on which a collection of molecular methodologies and
analyses tools (such as DNA metabarcoding) subsequently can be
applied to answer questions in e.g. palaeontology, ecology and
conservation biology.
2. Achievements of eDNA

‘‘Environmental DNA’’ arose with the idea of obtaining nucleic
acids of microbes directly from environmental samples (Ogram
et al., 1987; Olsen et al., 1986; Pace et al., 1986). This idea came
from the recognition, that culture-based methods grossly misrep-
resent the composition of microbial populations as they occur in
nature due to the fact that many microbes cannot be cultured,
and eDNA thus represents a unique access to information on their
genetic makeup (Brock, 1987). Later, eDNA from microorganisms
has since been studied extensively in soil (e.g. Fierer and
Jackson, 2006), permafrost (Johnson et al., 2007; Willerslev
et al., 2004), freshwater (e.g. Fisher and Triplett, 1999) and seawa-
ter (e.g. Venter et al., 2004), which has given valuable insights to
bacterial diversity (e.g. Zinger et al., 2011) and functional genom-
ics (Tringe et al., 2005).

The discovery of diverse eDNA from macro-organisms estab-
lished the approach as truly relevant in a conservation setting,
and have been shown in several different environments both
ancient and modern, terrestrial and aquatic (Fig. 1, Table 1). The
nature of DNA from macro-organisms in environmental samples
is different from targeting microbial organisms (prokaryotes and
microbial eukaryotes), as the former is present only as parts of
the organism (cellular remains or free DNA), whereas the latter
may be detected by DNA deriving from whole, living organisms
present in the samples.

2.1. Ancient environments

2.1.1. Terrestrial sediments
Environmental DNA as a method to assess the diversity of

macro-organismal communities was first applied to sediments,



Table 1
Macro-organismal environmental DNA (eDNA) studies reviewed in this paper.

Source References Title Sample habitat Taxons studied Geographical location Aproximate ages
(years BP)

Terrestrial
sediments

Willerslev et al. (2003) Diverse plant and animal genetic records from Holocene
and Pleistocene sediments

Cave sediments, permafrost Mammals, birds, plants New Zealand; Siberia Present – 400,000

Hofreiter et al. (2003) Molecular caving Cave sediments Mammals, birds Arizona, USA ca. 10,845
Lydolph et al. (2005) Beringian paleoecology inferred from permafrost-

preserved fungal DNA
Permafrost Fungi, plants, protists Siberia Present – 300,000–

400,000
Haile et al. (2007) Ancient DNA chronology within sediment deposits: Are

paleobiological reconstructions possible and is DNA
leaching a factor?

Cave sediments Birds, plants New Zealand Present – 3300

Haile et al. (2009) Ancient DNA reveals late survival of mammoth and
horse in interior Alaska

Perennially frozen sediments Mammals Alaska, USA ca. 7000–11,000

Thomsen et al. (2009) Non-destructive sampling of ancient insect DNA Temperate dry sediments Insects New Zealand 3000
Hebsgaard et al. (2009) ‘The farm beneath the sand’ – an archaeological case

study on ancient ‘dirt’ DNA
Sand sediment Mammals South-west Greenland AD 1030–1530

Sønstebø et al. (2010) Using next-generation sequencing for molecular
reconstruction of past Arctic vegetation and climate

Permafrost Plants Siberia 15,810–22,960
(uncal.)

Epp et al. (2012) New environmental metabarcodes for analyzing soil
DNA: potential for studying past and present ecosystems

Soil, permafrost Fungi, bryophytes, enchytraeids,
beetle, birds

Norway; Siberia Present, ca. 16,000–
50,000

Jørgensen et al. (2012) A comparative study of ancient sedimentary DNA, pollen
and macrofossils from permafrost sediments of northern
Siberia reveals long-term vegetational stability

Permafrost Plants Siberia 12,500–46,000

Jørgensen et al. (2012) Islands in the ice: detecting past vegetation on
Greenlandic nunataks using historical records and
sedimentary ancient DNA meta-barcoding

Nunatak sediments Plants Southern Greenland 5528

Willerslev et al. (2014) Fifty thousand years of Arctic vegetation and
megafaunal diet

Permafrost, soil Plants, nematodes Russia, Canada, Alaska,
Svalbard

Present – 50,000

Aquatic
sediments

Bhadury et al. (2006) Molecular detection of marine nematodes from
environmental samples: overcoming eukaryotic
interference

Marine and estuarine
sediments

Nematodes England Present

Fonseca et al. (2010) Second-generation environmental sequencing unmasks
marine metazoan biodiversity

Marine beach sediments Diverse metazoans Scotland Present?

Pawlowski et al. (2011) Eukaryotic richness in the abyss: insights from pyrotag
sequencing

Marine sediments Diverse eucaryotes Weddell Sea; Arctic
Ocean

Unknown?

Chariton et al. (2010) Ecological assessment of estuarine sediments by
pyrosequencing eukaryotic ribosomal DNA

Estuarine sediments Diverse eucaryotes Sydney, Australia Present

Anderson-Carpenter
et al. (2011)

Ancient DNA from lake sediments: bridging the gap
between paleoecology and genetics

Lake sediment Deciduous trees Michigan; Wisconsin,
USA

Up to ca. 3500

Matisoo-Smith et al.
(2008)

Recovery of DNA and pollen from NZ lake sediments Lake sediment Fish (probably gobiomorphus
cotidianus)

New Zealand AD 217–247

Pedersen et al. (2013) A comparative study of ancient environmental DNA to
pollen and macrofossils from lake sediments reveals
taxonomic overlap and additional plant taxa

Lake sediment Plants South Greenland Present – 10,500

Parducci et al. (2012) Glacial survival of boreal trees in Northern Scandinavia Lake sediment Trees (pine and spruce) Norway 6500–22,000
Parducci et al. (2013) Molecular- and pollen-based vegetation analysis in lake

sediments from central Scandinavia
Lake sediment Plants Norway; Sweden 900–10,400

Giguet-Covex et al.
(2014)

Long livestock farming history and human landscape
shaping revealed by lake sediment DNA

Lake sediment Domestic mammals, plants France Present – 5000

Ice Willerslev et al. (1999) Diversity of Holocene life forms in fossil glacier ice Holocene ice cores Plants, fungi, algae, protists Northern Greenland 2000–4 000
Willerslev et al. (2007) Ancient biomolecules from deep ice cores reveal a

forested Southern Greenland
Pleistocene ice cores Plants, arthropods Southern Greenland Between ca.

450,000–800,000

Soil O’Brien et al. (2005) Fungal community analysis by large-scale sequencing of
environmental samples

Forest soil Fungi North Carolina, USA Present

Buee et al. (2009) 454 Pyrosequencing analyses of forest soils reveal an Forest soil Fungi France Present

(continued on next page)
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Table 1 (continued)

Source References Title Sample habitat Taxons studied Geographical location Aproximate ages
(years BP)

unexpectedly high fungal diversity
Yoccoz et al. (2012) DNA from soil mirrors plant taxonomic and growth form

diversity
Boreal, temperate and
tropical soil

Plants Norway; France;
French Guiana

Present

Taberlet et al. (2012) Soil sampling and isolation of extracellular DNA from
large amount of starting material suitable for
metabarcoding studies

Grassland soil Plants France Present

Bienert et al. (2012) Tracking earthworm communities from soil DNA Soil Earthworms France Present
Andersen et al. (2012) Meta-barcoding of ‘dirt’ DNA from soil reflects

vertebrate biodiversity
Soil from animal enclosuers Mammals Denmark Present

Freshwater Martellini et al. (2005) Use of eukaryotic mitochondrial DNA to differentiate
human, bovine, porcine and ovine sources in fecally
contaminated surface water

Wastewater, rivers Human, cow, pig, sheep Quebec, Canada Present

Ficetola et al. (2008) Species detection using environmental DNA from water
samples

Ponds, artificial containers Amphibians (american bull frog) France Present

Jerde et al. (2011) ‘‘Sight-unseen’’ detection of rare aquatic species using
environmental DNA

Rivers Fish Illinois, USA Present

Goldberg et al. (2011) Molecular detection of vertebrates in stream water: a
demonstration using rocky mountain tailed frogs and
IDAHO giant salamanders

Streams Amphibians Idaho, USA Present

Dejean et al. (2011) Persistence of environmental DNA in freshwater
ecosystems

Artificial ponds and
containers

Amphibians, fish France Present

Thomsen et al. (2012) Monitoring endangered freshwater biodiversity using
environmental DNA

Ponds, lakes, streams,
artificial containers

Amphibians, fish, mammals,
insects, crustaceans

Northern Europe Present

Takahara et al. (2012) Estimation of fish biomass using environmental DNA Lagoon, artificial ponds and
containers

Fish Japan Present

Minamoto et al. (2011) Surveillance of fish species composition using
environmental DNA

Rivers, dammed pool,
artificial containers

Fish Japan Present

Dejean et al. (2012) Improved detection of an alien invasive species through
environmental DNA barcoding: the example of the
American bullfrog Lithobates catesbeianus

Ponds Amphibians (american bull frog) France Present

Pilliod et al. (2013) Estimating occupancy and abundance of stream
amphibians using environmental DNA from filtered
water samples

Streams Amphibians Idaho, USA Present

Wilcox et al. (2013) Robust detection of rare species using environmental
DNA: the importance of primer specificity

Streams Fish (brook trout) Montana, USA Present

Olson et al. (2013) An eDNA approach to detect eastern hellbenders
(Cryptobranchus a. alleganiensis) using samples of water

Rivers Amphibians (eastern hellbender) Indiana; Missouri, USA Present

Santas et al. (2013) Noninvasive method for a statewide survey of Eastern
Hellbenders Cryptobranchus alleganiensis using
environmental DNA

Rivers, streams, creeks Amphibians (eastern hellbender) Ohio; Kentucky, USA Present

Goldberg et al. (2013) Environmental DNA as a new method for early detection
of New Zealand mudsnails (Potamopyrgus antipodarum)

River, artificial containers Mollusk (new zealand mudsnail) Idaho, USA Present

Takahara et al. (2013) Using environmental DNA to estimate the distribution of
an invasive fish species in ponds

Ponds Fish (bluegill sunfish) Japan Present

Mahon et al. (2013) Validation of eDNA surveillance sensitivity for detection
of Asian carps in controlled and field experiments

Rivers Fish Illinois, USA Present

Jerde et al. (2013) Detection of Asian carp DNA as part of a Great Lakes
basin-wide surveillance program

Lakes, rivers Fish Illinois, USA Present

Egan et al. (2013) Rapid invasive species detection by combining
environmental DNA with light transmission
spectroscopy

Lakes Mollusk (zebra mussel) Michigan, USA Present

Piaggio et al. (2014) Detecting an elusive invasive species: a diagnostic PCR
to detect Burmese python in Florida waters and an
assessment of persistence of environmental DNA

Wetlands, artificial
containers

Reptiles (burmese python) Florida, USA Present
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Barnes et al. (2014) Environmental conditions influence eDNA persistence in
aquatic systems

Artificial containers Fish (common carp) Indiana, USA Present

Turner et al. (2014) Particle size distribution and optimal capture of aqueous
macrobial eDNA

Lakes, artificial containers Fish (common carp) Indiana, USA Present

Deiner and Altermatt
(2014)

Transport distance of invertebrate environmental DNA
in a natural river.

River Crustacean, mussel Switzerland Present

Pilliod et al. (2014) Factors influencing detection of eDNA from a stream-
dwelling amphibian

Streams Amphibian (idaho giant
salamander)

Idaho, USA Present

Tréguier et al. (2014) Environmental DNA surveillance for invertebrate
species: advantages and technical limitations to detect
invasive crayfish Procambarus clarkii in freshwater ponds

Ponds Crustacean (red swamp crayfish) France Present

Jane et al. (2014) Distance, flow and PCR inhibition: eDNA dynamics in
two headwater streams

Streams Fish (brook trout) Massachusetts, USA Present

Biggs et al. (2015) Using eDNA to develop a national citizen science-based
monitoring programme for the Great Crested Newt
(Triturus cristatus)

Ponds Amphibians (great crested newt) England, Wales,
Scotland

Present

Deiner et al. (2015) Choice of capture and extraction methods affect
detection of freshwater biodiversity from environmental
DNA

Lakes, rivers Crustaceans, insects, mussels,
general eucaryotes

Switzerland Present

Klymus et al. (2015) Quantification of eDNA shedding rates from invasive
bighead carp Hypophthalmichthys nobilis and silver
carp Hypophthalmichthys molitrix

Artificial containers Fish (carps) Missouri, USA Present

McKee et al. (2015) Evaluation of three simple treatments for the removal of
quantitative PCR inhibition in environmental DNA
samples

Wetlands Sample spiked with target
amphibian dna

Florida; Georgia; S.
Carolina, USA

Present

Sigsgaard et al. (2015) Monitoring the near-extinct European weather loach in
Denmark based on environmental DNA from water
samples

Streams Fish (weather loach) Denmark Present

Strickler et al. (2015) Quantifying effects of UV-B, temperature, and pH on
eDNA degradation in aquatic microcosms

Artificial containers Amphibians (american bull frog) Idaho, USA Present

Takahara et al. (2015) Effects of sample processing on the detection rate of
environmental DNA from the Common Carp (Cyprinus
carpio)

Ponds Fish (common carp) Japan Present

Turner et al. (2015) Fish environmental DNA is more concentrated in aquatic
sediments than surface water

Ponds, rivers Fish (bigheaded carp) Missouri; Indiana;
Kansas, USA

Present

Seawater Thomsen et al. (2012) Detection of a diverse marine fish fauna using
environmental DNA from seawater samples

Coastal water Fish Denmark Present

Foote et al. (2012) Investigating the potential use of environmental DNA
(eDNA) for genetic monitoring of marine mammals

Ocean, marine enclosure Whales Denmark Present

Kelly et al. (2014) Using environmental DNA to census marine fishes in a
large mesocosm

Sea-tank mesocosm Fish California, USA Present
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revealing DNA from extinct and extant mammals, birds and plants
(Willerslev et al., 2003), followed by dry cave sediments, revealing
DNA from past cave-dwelling mammals and birds (Hofreiter et al.,
2003). Later, it was shown that also DNA from invertebrates such
as insects (Epp et al., 2012; Thomsen et al., 2009) as well as fungi
(Lydolph et al., 2005) is also preserved in ancient sediments. This
so-called ‘sedimentary ancient DNA’ (sedaDNA or dirtDNA) has
been shown to be of local origin, and organisms must be physically
present at the site for their DNA to be deposited (Andersen et al.,
2012; Haile et al., 2009; Lydolph et al., 2005; Yoccoz et al., 2012).
DNA leaching through strata has not been observed in ancient fro-
zen sediments (Hansen et al., 2006; Willerslev et al., 2007, 2004) or
recently (<1000 years old) frozen sediments (Hebsgaard et al.,
2009), but may occur between layers in non-frozen depositional
settings (Andersen et al., 2012; Haile et al., 2007). Sedimentary
eDNA has been speculated to derive from faeces, urine, epidermal
cells and hair, which is based on the presence of DNA from copro-
philic and keratinophilic fungi found in ancient sediments
(Lydolph et al., 2005). The effectiveness of NGS techniques to
reconstruct paleo-ecosystems from permafrost samples has been
demonstrated to reveal rich diversity in past flora (Sønstebø
et al., 2010) and study recent environmental change in Greenland
(Jørgensen et al., 2012b). However, some results indicate that
physical remains such as pollen and macrofossils are complemen-
tary rather than overlapping with sedaDNA, and in combination,
reveal more detailed information on ancient plant communities
than can be achieved by each individual approach (Jørgensen
et al., 2012a; Parducci et al., 2013).

2.1.2. Aquatic sediments
Aquatic sediments (freshwater and marine) have also proven to

be rich in eDNA. In fact, the extracellular DNA in marine sediments
is considered by far the largest reservoir of DNA in the oceans
(Dell’Anno and Danovaro, 2005), and especially anoxic conditions
reduce nuclease degradation and favours long-term preservation
of eDNA (Corinaldesi et al., 2011). For example, Bhadury et al.
(2006) studied eDNA from nematodes, as an indicator of the mei-
ofauna, in marine and estuarine sediments. Also, eDNA from estu-
arine sediments have been used to compare eukaryotic species
assemblages to assess human impacts on these ecosystems
(Chariton et al., 2010). Later and more comprehensive analyses of
eDNA from marine benthic (Fonseca et al., 2010) and deep-sea sed-
iments (Pawlowski et al., 2011) have deployed NGS, revealing dif-
ferences in metazoan diversity at microgeographical scales and
DNA from all major groups of eukaryotes and most marine meta-
zoan groups, respectively.

Matisoo-Smith et al. (2008) was, as far as we know, the first
study to show that freshwater lake sediment, traditionally used
for pollen records, also contain macro-organismal eDNA – in this
case from fish. Later Anderson-Carpenter et al. (2011) successfully
amplified plant DNA from up to 4600 years old freshwater lake
sediment samples, and found that the results matched the taxo-
nomic identity of the macrofossil in the respective samples. Since
the DNA preservation is good under anoxic conditions, studies on
eDNA from aquatic sediments, such as the above, holds potential
for a better understanding of the ecological and evolutionary con-
sequences of environmental change (Giguet-Covex et al., 2014;
Parducci et al., 2012). Similar to results from terrestrial sediments,
eDNA from lake sediments also complements analyses of pollen
and macrofossils, validating the combination of traditional and
molecular techniques to obtain a more comprehensive picture of
biodiversity (Parducci et al., 2013; Pedersen et al., 2013).

2.1.3. Ice cores
Willerslev et al. (1999) showed for the first time that eukaryotic

eDNA, representing a diverse assemblage of both plants, fungi,
algae and protists, of both local and distant origin, could be
obtained from Holocene ice cores in northern Greenland. Later,
eDNA from much older, basal ice cores provided insights into a past
ecosystem of plants and arthropods, indicative of a forested south-
ern Greenland 450–800 thousand years ago – almost 2 million
years younger than previously presumed (Willerslev et al., 2007).

2.2. Modern environments

2.2.1. Surface soil
While studies on soil eDNA began on ancient deposits (sedi-

ments), there have been several recent applications to modern eco-
systems. Total soil DNA includes both intra- and extracellular DNA,
the latter of which probably being the most significant part (Levy-
Booth et al., 2007; Pietramellara et al., 2008). Metabarcoding of
eDNA from surface soil has thus efficiently been used as a proxy
for plant taxonomic diversity in several different terrestrial ecosys-
tems (Taberlet et al., 2012c; Yoccoz et al., 2012). The applicability
of soil eDNA has also been widely demonstrated for fungi
(reviewed by Anderson and Cairney, 2004; Chase and Fay, 2009),
for example by using DNA metabarcoding from various forest soils,
revealing rich and diverse fungal communities (Buee et al., 2009;
O’Brien et al., 2005). As for animal eDNA in modern soil samples,
Bienert et al. (2012) demonstrated that earthworm communities –
an important indicator group of ecosystem functioning and
health – can be identified using next-generation sequencing,
whereas Andersen et al. (2012) found that DNA from the soil
surface reflects overall taxonomic richness and relative biomass
of individual vertebrate species.

2.2.2. Freshwater
One of the first studies retrieving macro-organismal eDNA from

freshwater, focused on DNA from human, cow, pig and sheep, as a
method to detect the sources in faecally contaminated surface
water (Martellini et al., 2005). Later, eDNA from American bull-
frogs, an invasive amphibian species native to North America,
was successfully retrieved from natural pond water samples in
France (Ficetola et al., 2008). This study initiated a rapidly growing
interest in aquatic ecosystems, which have generating numerous
studies with direct applications to conservation (e.g. see this jour-
nal special issue). Many subsequent studies continued to focus on
detection of invasive species. Dejean et al. (2012) demonstrated
that eDNA can deliver improved detection of invasive species over
traditional methods, using the original model species – American
bullfrog. Jerde et al. (2011) studied two species of Asian carps in
river systems, which demonstrated that the forefronts of the spe-
cies were closer to invasion of upstream lake systems than initially
seen by traditional surveillance methods. This approach were later
expanded significantly (Jerde et al., 2013) and extended to other
related fish species in a study that confirmed presence of eDNA
also for low-abundance species in river systems (Mahon et al.,
2013). Takahara et al. (2013) used eDNA to estimate presence of
the invasive bluegill sunfish on Japanese mainlands and surround-
ing islands. Here eDNA also proved superior to visual detections.
Recently, the eDNA approach has been expanded to invasive
reptiles (Piaggio et al., 2014), snails (Goldberg et al., 2013) and
crustaceans (Tréguier et al., 2014).

Another line of freshwater eDNA reseach concerns endangered
species. Here, most studies have focused on detection of amphibi-
ans (Goldberg et al., 2011; Olson et al., 2013; Pilliod et al., 2013;
Santas et al., 2013; Thomsen et al., 2012b) and even quantification
(Pilliod et al., 2013; Thomsen et al., 2012b), which provides a
potential new range of opportunities for estimating relative abun-
dance. Quantification of fish biomass from fresh water samples has
also been attempted (Takahara et al., 2012), as well as species com-
position and communities (Minamoto et al., 2011; Thomsen et al.,
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2012b). Furthermore, it has been demonstrated that also endan-
gered freshwater insects, crustaceans, fish and mammals can be
monitored using eDNA, and that such an approach can account
for entire lake faunas of amphibians and fish using high-through-
put sequencing (Thomsen et al., 2012b).

Although Turner et al. (2014) recently found that aqueous
macrobial eDNA likely exists predominantly inside mitochondria
or small cells, the decay of eDNA in freshwater beyond the thresh-
old of detectability has been demonstrated to happen at a scale of
days or weeks (Dejean et al., 2011; Pilliod et al., 2014; Thomsen
et al., 2012b). This contrasts situations in soil, where eDNA is pro-
ven to persist for decades (and perhaps centuries) after deposition
(Andersen et al., 2012; Yoccoz et al., 2012). The rapid degradation
time in freshwater ecosystems makes eDNA very useful in conser-
vation, since a positive detection is likely to be associated with
contemporary presence of species and populations while poten-
tially misleading signals from past populations are not picked up.
Nevertheless, long distance transport of eDNA from hundreds of
meters to several kilometres have been reported in river systems,
and should be taken into account for flowing waters (Deiner and
Altermatt, 2014; Jane et al., 2014).
2.2.3. Seawater
It has been widely demonstrated that microbial (prokaryotic

and eukaryotic) biodiversity can be studied by sequencing DNA
from filtered seawater samples (Rusch et al., 2007; Sogin et al.,
2006; Venter et al., 2004; Zinger et al., 2011). Recently however,
Thomsen et al. (2012a) showed that it is possible to detect a rich
marine fish fauna by metabarcoding of eDNA from seawater sam-
ples, and that such an approach can cover the fish diversity better
than or equal to any of 9 methods conventionally used in marine
fish surveys. The approach has been validated in a large sea-tank
mesocosm, where also rank abundance of recovered eDNA corre-
lated with abundance of corresponding species’ biomass (Kelly
et al., 2014a). Furthermore, Foote et al. (2012) showed that eDNA
from whales can also be detected from seawater samples, and an
experimental setup in sea-enclosures indicated the eDNA signal
is evident only within short distances (metres) of animals. These
are the first evidence that marine water samples contain detect-
able eDNA from macro-organisms. An experimental setup has
shown that even small (100-bp) eDNA fragments in seawater
degrades beyond detectability within days (Thomsen et al.,
2012a). DNA degradation in seawater has previously been sug-
gested to be substantially faster with an empirical turnover rate
as low as 10 h (Dell’Anno and Corinaldesi, 2004). These studies
indicate low probability of long-distance dispersal of eDNA in mar-
ine ecosystems. Although further studies are needed to validate the
eDNA approach in contemporary marine environments, initial
studies show promising perspectives for future monitoring and
management of marine biodiversity and resources (Kelly et al.,
2014b).
3. Ancient environments and extinctions

Ancient eDNA represents a challenge to obtain and verify given
that it often has undergone significant degradation (Hansen et al.,
2006; Willerslev and Cooper, 2005). Nevertheless, analyzing DNA
in an evolutionary timeframe holds an important potential to
understand changes in ecosystems and extinctions. This was
recently evident by a study of Lorenzen et al. (2011), which ana-
lyzed the population history over the past 50,000 years using
mtDNA from six big-bodied mammals (megafauna). Coupling this
information with climate niche modelling and the archaeological
records it became evident that each species reacted individualisti-
cally to climate changes and that it is basically impossible to
predict which species would go extinct or survive over evolution-
ary time scales. Although the current study uses mtDNA from
ancient remains and does not employ eDNA as such, it demon-
strates that DNA can extend the time frame of population demog-
raphy and help reveal the uncertainties associated with extinction
predictions, providing relevant considerations for current species
conservation attempts.

Many extinction models are based on predictions as to when
the extinction happened (Nogués-Bravo et al., 2008). Again, such
estimates rely on dating of macrofossils like teeth and bones. How-
ever, the chance of finding some of the youngest individuals in a
dwindling population may be hard or impossible and scientists
are very unlikely to come across ‘‘the last’’ macrofossil left behind.
In this case eDNA from shed skin cells, urine or faces, which is
likely to be present and distributed over a larger area, is a valid
supplement to establish last appearance dates of species. This
was attempted by Haile et al. (2009) in Stevens Village, Alaska,
which is among the places where most bones of woolly mammoth
have been dated. Dating of these bones have previously suggested
an extinction date for woolly mammoth on mainland Alaska some
13,100 years BP. However, the eDNA results suggest survival of
mammoth until some 10,500 years BP – ca. 3500 years after first
human arrival into mainland Alaska and thus that man and beast
co-existed several thousand years prior to extinction of the latter.

In a recent study by Willerslev et al. (2014) more than 200 per-
mafrost samples from 21 sites across the Arctic covering the past
50,000 years were analyzed for plant chloroplast eDNA. Contrary
to many pollen studies, the results reveal that the coldest and dri-
est stages during the last ice age (the Last Glacial Maximum, LGM)
around 20 thousand years ago was a major bottleneck in plant
diversity and that the warmer periods before this bottleneck was
richer and more diverse in plant composition than the Holocene
period following the LGM, where many new taxa became domi-
nant. As such the study suggests that not only climatic changes
but also the recent vegetation history determines how ecosystems
develop over time.
4. Pitfalls and challenges for eDNA

Despite obvious perspectives and useful applications using
eDNA, several problematic issues associated with the approach
needs to be considered. For a more thorough treatment of these
issues see Coissac et al. (2012) and Pedersen et al. (in press).
4.1. Contamination

The most serious pitfall of eDNA is probably the risk of contam-
ination and hence the possibility of false positive results. Contam-
ination of samples can occur from taking the samples in the field to
every step of analyses in the laboratory. If several localities are
sampled after one another in the field, there is a risk of cross-
contamination: target DNA carried unintentionally from one
locality to another. Lab contamination is especially serious because
of the frequent use of PCR in eDNA studies, generating billions of
DNA copies, which can readily spread throughout the lab.
The use of NGS technologies has further complicated the
contamination issue, as they produce a very high throughput of
DNA sequences likely to reveal tiny amounts of lab-source PCR
products. Cross-contamination in the lab seems almost unavoidable,
and it is essential to apply conservative cut-offs for minimum
percentages of sequences obtained in a sample, and/or the
amplification success in independent PCR reactions, before includ-
ing a recovered taxon as authentic. A strict clean-lab protocol using
decontamination procedures and physical separation of labs for
pre- and post-PCR work will significantly limit the contamination
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risks (Champlot et al., 2010; Willerslev and Cooper, 2005). Inclu-
sion of DNA extraction blanks and PCR blanks, as well as field
blanks, to monitor contamination is essential.

4.2. Inhibition

Humic acids or humic substances, co-extracted with DNA in
environmental samples, strongly inhibit enzymes such as the Taq
Polymerase used in PCR reactions to amplify DNA (Matheson
et al., 2010). This obviously represents a bias in eDNA studies,
which is probably most severe in soil samples, but also occurs in
water samples contaminated with sediment particles (McKee
et al., 2015; Sigsgaard et al., 2015). If not addressed sufficiently
in each study, inhibition can lead to generation of false negative
results. Both false positive and false negative results can have con-
sequences for downstream conservation effort leading to over- or
under-estimation of a species’ occurrence, respectively.

4.3. Errors

Erroneous DNA sequences will, just as contamination, give rise
to biased results. Errors can occur either before sampling in long-
term preserved DNA (Hansen et al., 2006; Willerslev and Cooper,
2005), during PCR or during sequencing. PCR-generated errors
include point mutations and formation of chimeric molecules
(Acinas et al., 2005). However, most errors are probably generated
during sequencing, and this has shown to overestimate actual
microbial diversity by two orders of magnitude (Kunin et al.,
2010). For animals, biodiversity signals are also obscured by PCR
and/or sequencing errors (Sefc et al., 2007). Therefore, raw
sequence data must be carefully filtered to limit false positives
and to generate a reliable taxon list (Fig. 1). There is obviously a
trade-off between conservative error trimming, and retaining as
much information on diversity in the samples as possible (Coissac
et al., 2012).

4.4. Reference DNA databases

Identification of DNA sequences derived from environmental
samples depends crucially on reliable reference DNA-sequence
databases. These are skewed in geographical and taxonomic
overage (Kvist, 2013), but global initiatives addressing this need
have been established, and databases are rapidly growing
(www.ncbi.nlm.nih.gov/genbank, www.boldsystems.org). Accord-
ingly, there are specific initiatives to provide DNA barcodes of
all the world’s fish (www.fishbol.org), mammal (www.
mammaliabol.org) and bird species, (www.barcodingbirds.org)
etc. It is clear, though, that the remaining gap in knowledge will
for some time impair the usefulness of eDNA monitoring at lower
taxonomic levels, where all species have not yet been sequenced.
However, the highly frequent COI sequences in these databases
are sub-optimal for eDNA metabarcoding (Deagle et al., 2014).
We thus suggest, given the massive increase in DNA sequencing
cost-efficiency, that future DNA reference databases focus on com-
plete mitochondrial or even nuclear genomes for much wider
applications than traditional DNA barcoding.

4.5. Single species detection vs. DNA metabarcoding

Broadly, two different approaches of species detection from
eDNA have been deployed: single species detection by PCR or
quantitative PCR (qPCR) and multi-species detection (eDNA meta-
barcoding) by NGS. The former is advantageous where the target is
one or a few known species, for which species-specific primers and
probes can be developed (Dejean et al., 2012; Takahara et al., 2013;
Thomsen et al., 2012b). The approach has high specificity, sensitiv-
ity and quantification ability, but is hampered by the limit to detect
only one target organism at a time. For more diverse systems, this
approach quickly becomes cost-inefficient and even impossible
due to lack of DNA extract for multiple reactions. Additionally,
many issues remains for reliable quantification of biomass/individ-
uals by eDNA using qPCR. These include Cycle threshold (Ct) cut-
off values and percentage of positive replicates for defining true
positives from background, as well as proper treatment of negative
qPCR replicates (Ellison et al., 2006; Bustin et al., 2009). A stan-
dardized number of qPCR replicates is also important to be used
consistently throughout a study. Finally, development of more
sophisticated modelling for describing DNA production and degra-
dation should be undertaken. The above issues remains to be prop-
erly addressed in qPCR based eDNA studies including those from
our own group (Thomsen et al., 2012a, 2012b). Here, we did not
define strict Ct cut-off values or include non-detect (no Ct) repli-
cates as zero in the calculations of average DNA concentrations,
which has been shown to increase accuracy and should be the
practice (Ellison et al., 2006). Nevertheless, negative replicates
are frequent in eDNA studies where DNA concentration is often
low and the sample is a complex mixture of non-target DNA and
environmental particles probably influencing oligo efficiency.
Thus, template amount is a trade-off between avoiding inhibition
and retaining a detectable concentration of target molecules. Fx.
Biggs et al. (2015) finds eDNA detection in 1/12 replicates for some
samples. Accordingly, some of the standard detection and quantifi-
cation thresholds defined in the literature might have to be relaxed
for eDNA studies. If high Ct values are included, sequencing of the
product for verification is crucial (Thomsen et al., 2012a, 2012b).

On the other hand, the DNA metabarcoding approach is power-
ful and cost-efficient (Thomsen et al., 2012a, 2012b; Yoccoz et al.,
2012) and the technology for mass DNA sequencing continues to
improve (Schadt et al., 2010; Shokralla et al., 2012). The main
drawback, when using generic primers for metabarcoding, is pri-
mer affinity bias leading to certain sequences (species) amplifying
less efficiently than others (Deagle et al., 2014). This will in turn
limit the results to species with best primer affinity or to species,
which is already known to be locally present so specific-primers
can be designed (Riaz et al., 2011; Wilcox et al., 2013). However,
such limitations will continuously become less crucial due to opti-
mization and publication of generic primers for metabarcoding
studies.

High-throughput sequencing has also added another level of
complexity to the analyses of results, and the massive amount of
sequences needs to be filtered in a conservative way to remove
low abundant sequence reads that might originate from errors or
chimeric sequences. Such denoising is crucial to discriminate
authentic molecular diversity from errors and hence to give
accurate estimation of the biodiversity represented in the
samples and a number of programs are available for sequence
data e.g. Amplicon Noise (Quince et al., 2011). A range of tools
has been developed to aid processing of NGS data, such as OBITools
(www.grenoble.prabi.fr/trac/OBITools) and QIIME (Caporaso et al.,
2010). The translation of DNA sequence diversity obtained from
metabarcoding of e.g. an environmental sample into actual
‘‘species’’ richness and diversity is not straightforward. First, retrieved
sequences are clustered in MOTUs representing supposedly discrete
taxons, however this delimitation is sometimes based on arbitrary
criteria (Coissac et al., 2012), and is unlikely to be standardized
across taxa. When taxonomic coverage of the DNA database is
low or non-existent, sequences will remain clustered into MOTUs.
The task of retrieving actual species names (important units of con-
servation) from eDNA metabarcoding results are more challenging
due to: (i) limited knowledge of inter- and intra-specific sequence
diversity of the targeted DNA-fragment and considerable gaps in
DNA sequence databases (Kvist, 2013), (ii) limited genetic variation

http://www.ncbi.nlm.nih.gov/genbank
http://www.boldsystems.org
http://www.fishbol.org
http://www.mammaliabol.org
http://www.mammaliabol.org
http://www.barcodingbirds.org
http://www.grenoble.prabi.fr/trac/OBITools
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of target genes of some taxa (Waugh, 2007) and (iii) the limitation
of eDNA to short DNA sequences with poor taxonomic resolution.
Nevertheless, similar constraints are also associated with species
identification using morphological characters. Progress are being
made to standardize and improve the clustering and taxonomic
identification of sequences from metabarcoding studies (Jones
et al., 2011; Puillandre et al., 2012; Zhang et al., 2013). However,
for obtaining sheer estimates of diversity and richness based on
sequence diversity, DNA metabarcoding can essentially be inde-
pendent of DNA databases and clustering sequences into MOTUs
can provide estimates comparable between different localities or
at different conditions within a locality.

See further discussion on bioinformatic methods and challenges
in Coissac et al. (2012).

4.6. Interpretation of results

Another important issue in eDNA studies concerns the critical
interpretation of final results. Here, important caveats associated
with eDNA detection compared to traditional surveys includes
the failure to distinguish living vs. dead organisms, particular life
stages (eggs, juveniles, adults) and hybrid species. The latter is
linked to the dominant use of mitochondrial markers. Despite
advantages of being useful as DNA barcodes and plentiful in
excreted cells, mtDNA can only detect the maternal lineage of a
hybrid species. Finally, eDNA, like any other monitoring approach,
will only detect a proportion of the total sites occupied by a given
species. Using site occupancy models, Schmidt et al. (2013) dem-
onstrated the importance of using rigorous analyses of presence/
absence data to obtain more reliable estimates on species occu-
pancy based on eDNA. Occupancy models can also be used to cal-
culate the number of eDNA samples needed to reach a cumulative
detection chance of fx 95% (Schmidt et al., 2013).

4.7. What is the temporal and spatial scale?

For eDNA to be applicable in monitoring and conservation of
contemporary biodiversity, it is crucial that results reflect the pres-
ent state of an ecosystem. While studies of eDNA from water sam-
ples have demonstrated rapid degradation times suggesting that
results are fairly consistent in space and time (Dejean et al.,
2011; Thomsen et al., 2012a, 2012b), eDNA in soil seems to be able
to persist for decades or centuries (Andersen et al., 2012; Yoccoz
et al., 2012). This obviously questions the use of eDNA in soil from
terrestrial ecosystems in a conservation context and necessitate
further studies. However, the potential release of ‘‘ancient’’ eDNA
from bottom sediments to the water column (Turner et al. 2015)
might also complicate the use of aquatic eDNA as strict contempo-
rary biodiversity surveys. An extreme and highly intriguing exam-
ple of the borderline between ‘‘ancient’’ and ‘‘contemporary’’ eDNA
was recently demonstrated (Overballe-Petersen et al., 2013). Here
the authors show experimentally that bacteria can take up ancient
and damaged mammoth DNA down to just 20 bp by natural trans-
formation. As a consequence, the diverse pool of DNA in the envi-
ronment could potentially have shaped the evolution of bacteria by
incorporation of this DNA into their genomes through the history
of life on Earth. Furthermore, such transformed eDNA fragments
could even be re-deposited in the environment following cell-
death, which could make eDNA fragments continuously available
thousands or millions of years after they were first shed from its
original source.

Likewise, the spatial scale of eDNA monitoring is essential to
consider for any inferences on the proximity of target organisms
compared to their DNA traces left behind. Transport of target eDNA
from another locality by e.g. predators or man-made structures
represents a potential, yet often insignificant possibility (Jerde
et al., 2013). Transport of eDNA within an ecosystems remains an
issue especially in flowing waters (Deiner and Altermatt, 2014;
Jane et al., 2014; Pilliod et al., 2013) and marine environments
(Thomsen et al., 2012a), where long-distance transport is possible.

4.8. Skepticism

The fate of eDNA-based monitoring of biodiversity relies heavily
on the validity of results from the scientists and other organiza-
tions applying the approach. Skepticism about the general
approach from conservation planners will appear, if false results
from scientists or companies are unintentionally published. Here,
there is a lesson to be learned from ancient DNA research, where
enthusiasm in the initial research phase generated spectacular
results that were later disproved. These include claims of DNA
sequences surviving for millions of years in dinosaur bones
(Woodward et al., 1994) or amber inclusions (Cano et al., 1992).
However, it is the nature of any new research field to make mis-
takes, which for ancient DNA meant the adoption of rigorous lab
procedures to avoid contamination and high standards for authen-
tication of results. From this history a plea for strict general proto-
cols and authentication of results in conservation-related eDNA
studies emerges. Similarly, the implementation of eDNA in conser-
vation management remains a challenge and is subject of debate
(Darling and Mahon, 2011).

4.9. Future directions?

Moving from fundamental research to an applied tool in conser-
vation, several aspects need to be more thoroughly investigated
before eDNA approaches can be fully matured and integrated into
conservation. In this regard we suggest that future research on
both terrestrial and aquatic ecosystems should focus on:

(i) The temporal and spatial distribution of eDNA in different
habitats, which gives information as to what part of the bio-
diversity is monitored in space and time.

(ii) More precise links between eDNA concentration and species
abundance whether this is measured as total biomass or
density of individuals.

(iii) The exact sources of eDNA, whether this comes from
sloughed epithelial cells, intestinal cells, faeces and urine,
etc., which might vary with life stages of the target organism
and could therefore greatly influence abundance estimates.
Klymus et al. (2015) shows that an important source of
aquatic eDNA might be faeces as eDNA shedding rates
increase with feeding.

(iv) Physio-chemical factors influencing eDNA availability and
degradation such as temperature, pH and salinity. Barnes
et al. (2014) showed that a high degree of biological activity,
measured as chlorophyll concentration, biological oxygen
demand (BOD) and total eDNA, decreased the degradation
rate of eDNA, perhaps due to shielding of eDNA from UV
radiation by algae. Furthermore, Strickler et al. (2015)
explored the effect of various abiotic factors (temperature,
UV-radiation and pH) on eDNA degradation, which indicated
that high DNA degradation rates were associated with con-
ditions favourable for microbial growth.

Finally, we find it intriguing to explore the possibility of obtain-
ing much longer fragments than the usually targeted 100–200 bp,
target nuclear genes and test the eDNA metabarcoding approach
more thoroughly in truly high-diverse ecosystems such as the tro-
pics. Such advances would lead the way for important conservation
measures like species-level identification and population genetics
using environmental samples.
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5. Perspectives of eDNA

Obtaining accurate data on species distributions and extinctions
is by no means trivial. Establishing when a species is extinct will
inevitably be an assumption based on the last remains of a species.
Bones, hair, tissue and other visible fossil remains left behind will
only represent a fraction of a given species’ history on Earth. DNA
left in the environment represents the invisible traces from past
species still left for scientists to analyze. eDNA is likely to be much
more ubiquitous in the environment than the macrofossils not yet
destroyed beyond recognition due to millennia of weather and
mechanical degradation, simply because of the sheer amount of
cells in an organism or its remains left in the environment through
time. As such, eDNA is easier to sample in a stratified and compa-
rable manner across ancient ecosystems in order to establishing
more accurate last appearance dates of extinct species. Likewise,
information on contemporary species distributions, including
those thought to be recently extinct can be difficult to obtain. Here,
eDNA can be used to efficiently monitor invasive, cryptic, endan-
gered or presumably extinct species of conservation concern. Anal-
yses of ancient environments using eDNA does not speak directly
to present-day conservation issues, but understanding how species
become extinct in the past provides important information of the
unpredictability often associated with population fluctuations
and the role of humans in these processes (Haile et al., 2009;
Lorenzen et al., 2011) and it demonstrates how eDNA can be an
important (or the only) source to provide this information
(Willerslev et al., 2014). Acknowledging this history provides a
more robust platform for applying eDNA in conservation.

Keeping in mind the limitations and methodology challenges
mentioned in Section 4, eDNA approaches does offer some great
advantages over traditional methods in biodiversity monitoring.
Here we highlight the following:

(i) Standardization: Even though there are still methodological
optimization to be done (Deiner et al., 2015; Takahara
et al., 2015), obtaining an environmental sample can be
carried out in a very standardized manner across localities
in a given type of habitat. This is more difficult using tradi-
tional methods where, in general, results depend on the
taxonomic knowledge and experience by personnel carrying
out the surveys.

(ii) Non-invasiveness: eDNA is a truly non-invasive method that
inflicts no damage on the species or habitats under study.

(iii) Sensitivity: In situations where species of conservation
importance have cryptic life styles or require the study of
juvenile life stages that are difficult to identify from closely
related species, even high-quality taxonomic expertise are
often inadequate. Here eDNA methods can prove superior
to traditional methods in detection of species (e.g. Dejean
et al., 2012; Biggs et al., 2015).

(iv) Cost-effectiveness: It would be wrong to state generally that
eDNA is more cost-efficient than traditional methods as this
depends on the target species (Herder et al., 2014). Never-
theless, several studies report shorter handling time and
lower cost using eDNA compared to traditional monitoring
techniques (Jerde et al., 2011; Biggs et al., 2015; Sigsgaard
et al., 2015). As the price of sequencing per base-pair contin-
ues to decline exponentially, eDNA will in many cases
undoubtedly become superior to some traditional methods,
especially when using a metabarcoding approach.

(v) Independence of weather conditions: For several species (e.g.
amphibians), traditional surveys are difficult outside partic-
ular seasons or certain weather conditions where vocal
activity of adults are peaking. However, eDNA may remain
in their habitat also outside of these high-activity periods
(e.g. from juveniles), extending the time for monitoring.
For other species (e.g. fish), harsh weather conditions can
impede the usage of traditional fishing equipment but not
eDNA sampling.

The advance in DNA sequencing technologies has significantly
expanded the possibilities of using eDNA and is expected to con-
tinue improving in the future. Although the first studies using
eDNA relied on cloning and subsequent Sanger sequencing of
PCR products and many still do, there is no doubt that the new
emerging sequencing technologies will have profound impact on
eDNA studies (Shokralla et al., 2012), and become a fully integrated
part of ecologists’ toolbox (Baird and Hajibabaei, 2012; Taberlet
et al., 2012b; Valentini et al., 2009b). Furthermore, new genera-
tions of powerful technologies such as novel real-time sequencing
techniques e.g. PacBio RS by Pacific Bioscience� or Nanopore-based
sequencing by Oxford Nanopore Technologies�, carbon nanotube
chips (Mahon et al., 2011) and real-time laser transmission spec-
troscopy (Egan et al., 2013; Li et al., 2011), are awaiting full trial
of their promising potential in eDNA approaches. It is thus
expected that the use of eDNA in conservation and biological mon-
itoring will move from single-marker analyses of species or com-
munities to meta-genomic surveys of entire ecosystems for
predicting spatial and temporary biodiversity patterns (Davies
et al., 2012; Kelly et al., 2014b).

We wish to emphasize that eDNA approaches will complement
rather than replace traditional monitoring. This is evident from the
literature on sediments, where macrofossils, pollen and classical
surveys on the flora complements sedaDNA (Parducci et al.,
2013; Pedersen et al., 2013), and inferior detection probabilities
of eDNA for some freshwater taxa (Thomsen et al., 2012b). Further-
more, the final process of eDNA analyses (the one that can hardly
be standardized) is the interpretation of the results, and here the
necessity of well-trained taxonomists and ecologists to meaning-
fully interpret results and recommend subsequent actions cannot
be stressed enough.

Ultimately, we are looking to the most comprehensive way of
utilizing eDNA for the benefit of our planet and all of its inhabit-
ants. Environmental DNA will merely be a means to monitor biodi-
versity and provide fast and efficient insights on the distribution of
species, estimation of abundance and ultimately perhaps popula-
tion sizes, which all provides the basis of taking appropriate con-
servation actions. As such, it will never directly combat the
biodiversity crisis, which remains a more complicated issue requir-
ing especially political will, commitment and action.
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