373 research outputs found

    INTEGRATION OF SEMANTIC 3D CITY MODELS AND 3D MESH MODELS FOR ACCURACY IMPROVEMENTS OF SOLAR POTENTIAL ANALYSES

    Get PDF
    High-resolution 3D mesh models are an inexpensive and increasingly available data source for 3D models of cities and landscapes of high visual quality and rich geometric detail. However, because of their simple data structure, their analytic capabilites are limited. Semantic 3D city model contain rich thematic information and are well suited for analytics due to their deeply structured semantic data model. In this work an approach for the integration of semantic 3D city models with 3D mesh models is presented. The method is based on geometric distance measures between mesh triangles and semantic surfaces and a region growing approach using plane fitting. The resulting semantic segmentation of mesh triangles is stored in a CityGML data set, to enrich the semantic model with an additional detailed geometric representation of its surfaces and a broad range of unrepresented features like technical building installations, balconies, dormers, chimneys, and vegetation. The potential of the approach is demonstrated on the example of a solar potential analysis, which estimation quality is significantly improved due to the mesh integration. The impact of the method is quantified on a case study using open data from the city of Helsinki

    Searching for Radio Pulsars in 3EG Sources at Urumqi Observatory

    Full text link
    Since mid-2005, a pulsar searching system has been operating at 18 cm on the 25-m radio telescope of Urumqi Observatory. Test observations on known pulsars show that the system can perform the intended task. The prospect of using this system to observe 3EG sources and other target searching tasks is discussed.Comment: a training project about MSc thesi

    Nontraditional-Hour Child Care in Austin/Travis County: Insights from Interviews, Focus Groups, and Analyses of Supply and Demand

    Get PDF
    This report presents findings from interviews, focus groups, and analyses of survey and administrative data to describe nontraditional-hour (before 7:00 a.m. and after 6:00 p.m. during the traditional workweek and anytime on weekends) child care demand, supply, and preferences. Findings are based on analyses of data from the American Community Survey, the Survey of Income and Program Participation, Texas Workforce Commission administrative data, and analyses of data collected through interviews and focus groups with Austin/Travis County community leaders, employers, child care providers, and parents

    Passive experimental autoimmune encephalomyelitis in C57BL/6 with MOG: evidence of involvement of B cells

    Get PDF
    Experimental autoimmune encephalomyelitis (EAE) is the most relevant animal model to study demyelinating diseases such as multiple sclerosis. EAE can be induced by active (active EAE) or passive (at-EAE) transfer of activated T cells in several species and strains of rodents. However, histological features of at-EAE model in C57BL/6 are poorly described. The aim of this study was to characterize the neuroinflammatory and neurodegenerative responses of at-EAE in C57BL/6 mice by histological techniques and compare them with that observed in the active EAE model. To develop the at-EAE, splenocytes from active EAE female mice were harvested and cultured in presence of MOG 35-55 and IL-12, and then injected intraperitoneally in recipient female C57BL6/J mice. In both models, the development of EAE was similar except for starting before the onset of symptoms and presenting a higher EAE cumulative score in the at-EAE model. Spinal cord histological examination revealed an increased glial activation as well as more extensive demyelinating areas in the at-EAE than in the active EAE model. Although inflammatory infiltrates composed by macrophages and T lymphocytes were found in the spinal cord and brain of both models, B lymphocytes were significantly increased in the at-EAE model. The co-localization of these B cells with IgG and their predominant distribution in areas of demyelination would suggest that IgG-secreting B cells are involved in the neurodegenerative processes associated with at-EAE

    The complex TIE between macrophages and angiogenesis

    Get PDF
    Macrophages are primarily known as phagocytic immune cells, but they also play a role in diverse processes, such as morphogenesis, homeostasis and regeneration. In this review, we discuss the influence of macrophages on angiogenesis, the process of new blood vessel formation from the pre-existing vasculature. Macrophages play crucial roles at each step of the angiogenic cascade, starting from new blood vessel sprouting to the remodelling of the vascular plexus and vessel maturation. Macrophages form promising targets for both pro- and anti-angiogenic treatments. However, to target macrophages, we will first need to understand the mechanisms that control the functional plasticity of macrophages during each of the steps of the angiogenic cascade. Here, we review recent insights in this topic. Special attention will be given to the TIE2-expressing macrophage (TEM), which is a subtype of highly angiogenic macrophages that is able to influence angiogenesis via the angiopoietin-TIE pathway

    B Cell apoptosis in the central nervous system in experimental autoimmune Encephalomyelitis: Roles of B Cell CD95, CD95L and Bcl-2 expression

    Get PDF
    The role and fate of B cells in the central nervous system (CNS) in experimental autoimmune encephalomyelitis (EAE) are unknown. Using enzyme-linked immunospot assays we now show that B cells reactive to myelin basic protein (MBP) accumulate in the CNS of Lewis rats with acute EAE induced by immunization with MBP and adjuvants. We also report that B cells are eliminated from the CNS by apoptosis during spontaneous recovery from this disease. Apoptotic B cells were identified by flow cytometry of inflammatory cells extracted from the spinal cord and by histological sections of the spinal cord using light and electron microscopic immunocytochemistry. B cell apoptosis occurred preferentially in the CNS rather than in the peripheral lymphoid organs and was maximal just prior to the onset of spontaneous clinical recovery. Three colour flow cytometry indicated that B cells expressing CD95 (Fas) or CD95 ligand (CD95L) were highly vulnerable to apoptosis, whereas B cells expressing Bcl-2 were relatively protected from apoptosis. We propose that B cells are eliminated from the CNS by the interaction of CD95L and CD95 on the same B cell and that this contributes to the spontaneous resolution of CNS inflammation and clinical recovery in acute EAE

    Common Variants at 10 Genomic Loci Influence Hemoglobin A(1C) Levels via Glycemic and Nonglycemic Pathways

    Get PDF
    OBJECTIVE-Glycated hemoglobin (HbA(1c)), used to monitor and diagnose diabetes, is influenced by average glycemia over a 2- to 3-month period. Genetic factors affecting expression, turnover, and abnormal glycation of hemoglobin could also be associated with increased levels of HbA(1c). We aimed to identify such genetic factors and investigate the extent to which they influence diabetes classification based on HbA(1c) levels.RESEARCH DESIGN AND METHODS-We studied associations with HbA(1c) in up to 46,368 nondiabetic adults of European descent from 23 genome-wide association studies (GWAS) and 8 cohorts with de novo genotyped single nucleotide polymorphisms (SNPs). We combined studies using inverse-variance meta-analysis and tested mediation by glycemia using conditional analyses. We estimated the global effect of HbA(1c) loci using a multilocus risk score, and used net reclassification to estimate genetic effects on diabetes screening.RESULTS-Ten loci reached genome-wide significant association with HbA(1c), including six new loci near FN3K (lead SNP/P value, rs1046896/P = 1.6 x 10(-26)), HFE (rs1800562/P = 2.6 x 10(-20)), TMPRSS6 (rs855791/P = 2.7 x 10(-14)), ANK1 (rs4737009/P = 6.1 x 10(-12)), SPTA1 (rs2779116/P = 2.8 x 10(-9)) and ATP11A/TUBGCP3 (rs7998202/P = 5.2 x 10(-9)), and four known HbA(1c) loci: HK1 (rs16926246/P = 3.1 x 10(-54)), MTNR1B (rs1387153/P = 4.0 X 10(-11)), GCK (rs1799884/P = 1.5 x 10(-20)) and G6PC2/ABCB11 (rs552976/P = 8.2 x 10(-18)). We show that associations with HbA(1c) are partly a function of hyperglycemia associated with 3 of the 10 loci (GCK, G6PC2 and MTNR1B). The seven nonglycemic loci accounted for a 0.19 (%HbA(1c)) difference between the extreme 10% tails of the risk score, and would reclassify similar to 2% of a general white population screened for diabetes with HbA(1c).CONCLUSIONS-GWAS identified 10 genetic loci reproducibly associated with HbA(1c). Six are novel and seven map to loci where rarer variants cause hereditary anemias and iron storage disorders. Common variants at these loci likely influence HbA(1c) levels via erythrocyte biology, and confer a small but detectable reclassification of diabetes diagnosis by HbA(1c) Diabetes 59: 3229-3239, 201
    corecore