77 research outputs found

    Improved LIDT values for dielectric dispersive compensating mirrors applying ternary composites

    Get PDF
    The present contribution is addressed to an improved method to fabricate dielectric dispersive compensating mirrors (CMs) with an increased laser induced damage threshold (LIDT) by the use of ternary composite layers. Taking advantage of a novel in-situ phase monitor system, it is possible to control the sensitive deposition process more precisely. The study is initiated by a design synthesis, to achieve optimum reflection and GDD values for a conventional high low stack (HL)n. Afterwards the field intensity is analyzed, and layers affected by highest electric field intensities are exchanged by ternary composites of TaxSiyOz. Both designs have similar target specifications whereby one design is using ternary composites and the other one is distinguished by a (HL)n. The first layers of the stack are switched applying in-situ optical broad band monitoring in conjunction with a forward re-optimization algorithm, which also manipulates the layers remaining for deposition at each switching event. To accomplish the demanded GDD-spectra, the last layers are controlled by a novel in-situ white light interferometer operating in the infrared spectral range. Finally the CMs are measured in a 10.000 on 1 procedure according to ISO 21254 applying pulses with a duration of 130 fs at a central wavelength of 775 nm to determine the laser induced damage threshold. © 2016 SPIE. Downloading of the abstract is permitted for personal use only.DFG/EXC/QUESTVolkswagen StiftungBMBF/13N1155

    Precise fabrication of ultra violet dielectric dispersion compensating mirrors

    Get PDF
    The present contribution is concentrated on an improved method to manufacture dielectric dispersion compensating mirrors in the ultra violet (UV) range by applying a novel online phase monitoring device. This newly developed measurement tool monitors the group delay (GD) and group delay dispersion (GDD) of the electromagnetic field in situ during the deposition of the layer system. Broad band monitoring of the phase enhances the accuracy in the near infrared spectral range (NIR), significantly. In this study, the correlation of the GDD in the NIR and in the UV spectral range is investigated. A design synthesis is introduced to achieve optimum reflection and GDD target values in the UV and NIR. This requires a similar behavior of both bands according to deposition errors, to guarantee switching off the UV GDD target band proper, while monitoring the GDD in the NIR spectral range. The synthesis results in a design, characterized by a GDD of -100fs2±20fs2 between 330nm and 360nm in the UV and by -450fs2±10fs2 within 820nm to 870nm in the NIR. The fabricated sample, applying an ion beam sputtering process, consists of a 9μm layer stack of Hafnium oxide and Silicon dioxide. The first layers of the stack are switched and controlled by a conventional in situ spectrometric broad band monitoring in conjunction with a forward re-optimization algorithm, which also manipulates the layers remaining for deposition at each switching event. To accomplish the demanded GDD-spectra, the last layers are controlled by the novel in situ GDD monitor. © 2015 SPIE.DFG/EXC/QUESTDFG/13N1155

    Transcatheter edge-to-edge repair of tricuspid regurgitation in the Netherlands:state of the art and future perspectives

    Get PDF
    Despite the high prevalence and adverse clinical outcomes of severe tricuspid regurgitation (TR), conventional treatment options, surgical or pharmacological, are limited. Surgery is associated with a high peri-operative risk and medical treatment has not clearly resulted in clinical improvements. Therefore, there is a high unmet need to reduce morbidity and mortality in patients with severe TR. During recent years, several transcatheter solutions have been studied. This review focuses on the transcatheter edge-to-edge repair of TR (TTVR) with respect to patient selection, the procedure, pre- and peri-procedural echocardiographic assessments and clinical outcomes. Furthermore, we highlight the current status of TTVR in the Netherlands and provide data from our initial experience at the University Medical Centre Groningen

    New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.

    Get PDF
    Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes

    A Solve-RD ClinVar-based reanalysis of 1522 index cases from ERN-ITHACA reveals common pitfalls and misinterpretations in exome sequencing

    Get PDF
    Purpose: Within the Solve-RD project (https://solve-rd.eu/), the European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies aimed to investigate whether a reanalysis of exomes from unsolved cases based on ClinVar annotations could establish additional diagnoses. We present the results of the "ClinVar low-hanging fruit" reanalysis, reasons for the failure of previous analyses, and lessons learned. Methods: Data from the first 3576 exomes (1522 probands and 2054 relatives) collected from European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies was reanalyzed by the Solve-RD consortium by evaluating for the presence of single-nucleotide variant, and small insertions and deletions already reported as (likely) pathogenic in ClinVar. Variants were filtered according to frequency, genotype, and mode of inheritance and reinterpreted. Results: We identified causal variants in 59 cases (3.9%), 50 of them also raised by other approaches and 9 leading to new diagnoses, highlighting interpretation challenges: variants in genes not known to be involved in human disease at the time of the first analysis, misleading genotypes, or variants undetected by local pipelines (variants in off-target regions, low quality filters, low allelic balance, or high frequency). Conclusion: The "ClinVar low-hanging fruit" analysis represents an effective, fast, and easy approach to recover causal variants from exome sequencing data, herewith contributing to the reduction of the diagnostic deadlock.The Solve-RD project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement number 779257. Data were analyzed using the RD-Connect Genome-Phenome Analysis Platform, which received funding from the EU projects RD-Connect, Solve-RD, and European Joint Programme on Rare Diseases (grant numbers FP7 305444, H2020 779257, H2020 825575), Instituto de Salud Carlos III (grant numbers PT13/0001/0044, PT17/0009/0019; Instituto Nacional de Bioinformática), and ELIXIR Implementation Studies. The collaborations in this study were facilitated by the European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies, one of the 24 European Reference Networks approved by the European Reference Network Board of Member States, cofunded by the European Commission. This project was supported by the Czech Ministry of Health (number 00064203) and by the Czech Ministry of Education, Youth and Sports (number - LM2018132) to M.M.S

    Loss-of-function mutations in UDP-Glucose 6-Dehydrogenase cause recessive developmental epileptic encephalopathy

    Get PDF
    Developmental epileptic encephalopathies are devastating disorders characterized by intractable epileptic seizures and developmental delay. Here, we report an allelic series of germline recessive mutations in UGDH in 36 cases from 25 families presenting with epileptic encephalopathy with developmental delay and hypotonia. UGDH encodes an oxidoreductase that converts UDP-glucose to UDP-glucuronic acid, a key component of specific proteoglycans and glycolipids. Consistent with being loss-of-function alleles, we show using patients’ primary fibroblasts and biochemical assays, that these mutations either impair UGDH stability, oligomerization, or enzymatic activity. In vitro, patient-derived cerebral organoids are smaller with a reduced number of proliferating neuronal progenitors while mutant ugdh zebrafish do not phenocopy the human disease. Our study defines UGDH as a key player for the production of extracellular matrix components that are essential for human brain development. Based on the incidence of variants observed, UGDH mutations are likely to be a frequent cause of recessive epileptic encephalopathy

    Loss-of-function mutations in UDP-Glucose 6-Dehydrogenase cause recessive developmental epileptic encephalopathy

    Get PDF
    AbstractDevelopmental epileptic encephalopathies are devastating disorders characterized by intractable epileptic seizures and developmental delay. Here, we report an allelic series of germline recessive mutations in UGDH in 36 cases from 25 families presenting with epileptic encephalopathy with developmental delay and hypotonia. UGDH encodes an oxidoreductase that converts UDP-glucose to UDP-glucuronic acid, a key component of specific proteoglycans and glycolipids. Consistent with being loss-of-function alleles, we show using patients’ primary fibroblasts and biochemical assays, that these mutations either impair UGDH stability, oligomerization, or enzymatic activity. In vitro, patient-derived cerebral organoids are smaller with a reduced number of proliferating neuronal progenitors while mutant ugdh zebrafish do not phenocopy the human disease. Our study defines UGDH as a key player for the production of extracellular matrix components that are essential for human brain development. Based on the incidence of variants observed, UGDH mutations are likely to be a frequent cause of recessive epileptic encephalopathy.</jats:p

    Cross-national variations in reported discrimination among people treated for major depression worldwide: The ASPEN/INDIGO international study

    Get PDF
    Background: No study has so far explored differences in discrimination reported by people with major depressive disorder (MDD) across countries and cultures. Aims: To (a) compare reported discrimination across different countries, and (b) explore the relative weight of individual and contextual factors in explaining levels of reported discrimination in people with MDD. Method: Cross-sectional multisite international survey (34 countries worldwide) of 1082 people with MDD. Experienced and anticipated discrimination were assessed by the Discrimination and Stigma Scale (DISC). Countries were classified according to their rating on the Human Development Index (HDI). Multilevel negative binomial and Poisson models were used. Results: People living in 'very high HDI' countries reported higher discrimination than those in 'medium/low HDI' countries. Variation in reported discrimination across countries was only partially explained by individual-level variables. The contribution of country-level variables was significant for anticipated discrimination only. Conclusions: Contextual factors play an important role in anticipated discrimination. Country-specific interventions should be implemented to prevent discrimination towards people with MDD

    Collaborative meta-analysis finds no evidence of a strong interaction between stress and 5-HTTLPR genotype contributing to the development of depression

    Get PDF
    The hypothesis that the S allele of the 5-HTTLPR serotonin transporter promoter region is associated with increased risk of depression, but only in individuals exposed to stressful situations, has generated much interest, research, and controversy since first proposed in 2003. Multiple meta-analyses combining results from heterogeneous analyses have not settled the issue. To determine the magnitude of the interaction and the conditions under which it might be observed, we performed new analyses on 31 datasets containing 38 802 European-ancestry subjects genotyped for 5-HTTLPR and assessed for depression and childhood maltreatment or other stressful life events, and meta-analyzed the results. Analyses targeted two stressors (narrow, broad) and two depression outcomes (current, lifetime). All groups that published on this topic prior to the initiation of our study and met the assessment and sample size criteria were invited to participate. Additional groups, identified by consortium members or self-identified in response to our protocol (published prior to the start of analysis1) with qualifying unpublished data were also invited to participate. A uniform data analysis script implementing the protocol was executed by each of the consortium members. Our findings do not support the interaction hypothesis. We found no subgroups or variable definitions for which an interaction between stress and 5-HTTLPR genotype was statistically significant. In contrast, our findings for the main effects of life stressors (strong risk factor) and 5-HTTLPR genotype (no impact on risk) are strikingly consistent across our contributing studies, the original study reporting the interaction, and subsequent meta-analyses. Our conclusion is that if an interaction exists in which the S allele of 5-HTTLPR increases risk of depression only in stressed individuals, then it is not broadly generalizable, but must be of modest effect size and only observable in limited situations
    corecore