10 research outputs found

    Soluble CD59 in peritoneal dialysis:a potential biomarker for peritoneal membrane function

    Get PDF
    INTRODUCTION: Various studies have reported the importance of complement regulators in preventing mesothelial damage during peritoneal dialysis (PD). Its assessment, however, is limited in clinical practice due to the lack of easy access to the peritoneal membrane. Recently, a soluble form of the complement regulatory protein CD59 (sCD59) has been described. We therefore aimed to investigate the role of sCD59 in PD. METHODS: Plasma sCD59 was measured in 48 PD patients, 41 hemodialysis patients, 15 non-dialysis patients with chronic kidney disease and 14 healthy controls by ELISA (Hycult; HK374-02). Additionally, sCD59 and sC5b-9 were assessed in the peritoneal dialysate. RESULTS: sCD59 and sC5b-9 were detectable in the peritoneal dialysate of all patients, and marginally correlated (r = 0.27, P = 0.06). Plasma sCD59 levels were significantly higher in PD patients than in patients with chronic kidney disease and healthy controls, but did not differ from hemodialysis patients. During follow-up, 19% of PD patients developed peritoneal membrane failure and 27% of PD patients developed loss of residual renal function. In adjusted models, increased sCD59 levels in the dialysate (HR 3.44, 95% CI 1.04–11.40, P = 0.04) and in plasma (HR 1.08, 95% CI 1.01–1.17, P = 0.04) were independently associated with the occurrence of peritoneal membrane failure. Higher plasma levels of sCD59 were also associated with loss of residual renal function (HR 1.10, 95% CI 1.04–1.17, P < 0.001). CONCLUSIONS: Our study suggests that sCD59 has potential as a biomarker to predict peritoneal membrane function and loss of residual renal function in PD, thereby offering a tool to improve patient management. GRAPHIC ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s40620-020-00934-7

    Evidence, detailed characterization and clinical context of complement activation in acute multisystem inflammatory syndrome in children

    Get PDF
    Multisystem inflammatory syndrome in children (MIS-C) is a rare, life-threatening complication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. MIS-C develops with high fever, marked inflammation and shock-like picture several weeks after exposure to, or mild infection with SARS-CoV-2. Deep immune profiling identified activated macrophages, neutrophils, B-plasmablasts and CD8 + T cells as key determinants of pathogenesis together with multiple inflammatory markers. The disease rapidly responds to intravenous immunoglobulin (IVIG) treatment with clear changes of immune features. Here we present the results of a comprehensive analysis of the complement system in the context of MIS-C activity and describe characteristic changes during IVIG treatment. We show that activation markers of the classical, alternative and terminal pathways are highly elevated, that the activation is largely independent of anti-SARS-CoV-2 humoral immune response, but is strongly associated with markers of macrophage activation. Decrease of complement activation is closely associated with rapid improvement of MIS-C after IVIG treatment

    Measurement of soluble CD59 in CSF in demyelinating disease: Evidence for an intrathecal source of soluble CD59

    Get PDF
    Background: CD59, a broadly expressed glycosylphosphatidylinositol-anchored protein, is the principal cell inhibitor of complement membrane attack on cells. In the demyelinating disorders, multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD), elevated complement protein levels, including soluble CD59 (sCD59), were reported in cerebrospinal fluid (CSF). Objectives: We compared sCD59 levels in CSF and matched plasma in controls and patients with MS, NMOSD and clinically isolated syndrome (CIS) and investigated the source of CSF sCD59 and whether it was microparticle associated. Methods: sCD59 was quantified using enzyme-linked immunosorbent assay (ELISA; Hycult; HK374-02). Patient and control CSF was subjected to western blotting to characterise anti-CD59-reactive materials. CD59 was localised by immunostaining and in situ hybridisation. Results: CSF sCD59 levels were double those in plasma (CSF, 30.2 ng/mL; plasma, 16.3 ng/mL). Plasma but not CSF sCD59 levels differentiated MS from NMOSD, MS from CIS and NMOSD/CIS from controls. Elimination of microparticles confirmed that CSF sCD59 was not membrane anchored. Conclusion: CSF levels of sCD59 are not a biomarker of demyelinating diseases. High levels of sCD59 in CSF relative to plasma suggest an intrathecal source; CD59 expression in brain parenchyma was low, but expression was strong on choroid plexus (CP) epithelium, immediately adjacent the CSF, suggesting that this is the likely source

    Controlling T‑Cell Activation with Synthetic Dendritic Cells Using the Multivalency Effect

    No full text
    Artificial antigen-presenting cells (aAPCs) have recently gained a lot of attention. They efficiently activate T cells and serve as powerful replacements for dendritic cells in cancer immunotherapy. Focusing on a specific class of polymer-based aAPCs, so-called synthetic dendritic cells (sDCs), we have investigated the importance of multivalent binding on T-cell activation. Using antibody-functionalized sDCs, we have tested the influence of polymer length and antibody density. Increasing the multivalent character of the antibody-functionalized polymer lowered the effective concentration required for T-cell activation. This was evidenced for both early and late stages of activation. The most important effect observed was the significantly prolonged activation of the stimulated T cells, indicating that multivalent sDCs sustain T-cell signaling. Our results highlight the importance of multivalency for the design of aAPCs and will ultimately allow for better mimics of natural dendritic cells that can be used as vaccines in cancer treatment

    Complement C3 inhibition in severe COVID-19 using compstatin AMY-101

    No full text
    Complement C3 activation contributes to COVID-19 pathology, and C3 targeting has emerged as a promising therapeutic strategy. We provide interim data from ITHACA, the first randomized trial evaluating a C3 inhibitor, AMY-101, in severe COVID-19 (PaO2/FiO2 &lt;= 300 mmHg). Patients received AMY-101 (n = 16) or placebo (n = 15) in addition to standard of care. AMY-101 was safe and well tolerated. Compared to placebo (8 of 15, 53.3%), a higher, albeit nonsignificant, proportion of AMY-101-treated patients (13 of 16, 81.3%) were free of supplemental oxygen at day 14. Three nonresponders and two placebo-treated patients succumbed to disease-related complications. AMY-101 significantly reduced CRP and ferritin and restrained thrombin and NET generation. Complete and sustained C3 inhibition was observed in all responders. Residual C3 activity in the three nonresponders suggested the presence of a convertase-independent C3 activation pathway overriding the drug's inhibitory activity. These findings support the design of larger trials exploring the potential of C3-based inhibition in COVID-19 or other complement-mediated diseases

    Complement Activation in the Disease Course of Coronavirus Disease 2019 and Its Effects on Clinical Outcomes

    No full text
    BACKGROUND: Excessive activation of immune responses in coronavirus disease 2019 (COVID-19) is considered to be related to disease severity, complications, and mortality rate. The complement system is an important component of innate immunity and can stimulate inflammation, but its role in COVID-19 is unknown. METHODS: A prospective, longitudinal, single center study was performed in hospitalized patients with COVID-19. Plasma concentrations of complement factors C3a, C3c, and terminal complement complex (TCC) were assessed at baseline and during hospital admission. In parallel, routine laboratory and clinical parameters were collected from medical files and analyzed. RESULTS: Complement factors C3a, C3c, and TCC were significantly increased in plasma of patients with COVID-19 compared with healthy controls (P < .05). These complement factors were especially elevated in intensive care unit patients during the entire disease course (P < .005 for C3a and TCC). More intense complement activation was observed in patients who died and in those with thromboembolic events. CONCLUSIONS: Patients with COVID-19 demonstrate activation of the complement system, which is related to disease severity. This pathway may be involved in the dysregulated proinflammatory response associated with increased mortality rate and thromboembolic complications. Components of the complement system might have potential as prognostic markers for disease severity and as therapeutic targets in COVID-19

    Complement Activation in the Disease Course of Coronavirus Disease 2019 and Its Effects on Clinical Outcomes

    No full text
    Background: Excessive activation of immune responses in coronavirus disease 2019 (COVID-19) is considered to be related to disease severity, complications, and mortality rate. The complement system is an important component of innate immunity and can stimulate inflammation, but its role in COVID-19 is unknown. Methods: A prospective, longitudinal, single center study was performed in hospitalized patients with COVID-19. Plasma concentrations of complement factors C3a, C3c, and terminal complement complex (TCC) were assessed at baseline and during hospital admission. In parallel, routine laboratory and clinical parameters were collected from medical files and analyzed. Results: Complement factors C3a, C3c, and TCC were significantly increased in plasma of patients with COVID-19 compared with healthy controls (P<.05). These complement factors were especially elevated in intensive care unit patients during the entire disease course (P<.005 for C3a and TCC). More intense complement activation was observed in patients who died and in those with thromboembolic events. Conclusions: Patients with COVID-19 demonstrate activation of the complement system, which is related to disease severity. This pathway may be involved in the dysregulated proinflammatory response associated with increased mortality rate and thromboembolic complications. Components of the complement system might have potential as prognostic markers for disease severity and as therapeutic targets in COVID-19
    corecore