120 research outputs found

    The Urtica dioica

    Full text link

    Time-dependent stimulation by aldosterone of blocker-sensitive ENaCs in A6 epithelia

    Get PDF
    To study and define the early time-dependent response (< or = 6 h) of blocker-sensitive epithelial Na+ channels (ENaCs) to stimulation of Na+ transport by aldosterone, we used a new modified method of blocker-induced noise analysis to determine the changes of single-channel current (iNa) channel open probability (Po), and channel density (NT) under transient conditions of transport as measured by macroscopic short-circuit currents (Isc). In three groups of experiments in which spontaneous baseline rates of transport averaged 1.06, 5.40, and 15.14 microA/cm2, stimulation of transport occurred due to increase of blocker-sensitive channels. NT varied linearly over a 70-fold range of transport (0.5-35 microA/cm2). Relatively small and slow time-dependent but aldosterone-independent decreases of Po occurred during control (10-20% over 2 h) and aldosterone experimental periods (10-30% over 6 h). When the Po of control and aldosterone-treated tissues was examined over the 70-fold extended range of Na+ transport, Po was observed to vary inversely with Isc, falling from approximately 0.5 to approximately 0.15 at the highest rates of Na+ transport or approximately 25% per 3-fold increase of transport. Because decreases of Po from any source cannot explain stimulation of transport by aldosterone, it is concluded that the early time-dependent stimulation of Na+ transport in A6 epithelia is due exclusively to increase of apical membrane NT

    Advancing research on loyalty programs:a future research agenda

    Get PDF
    Artículo de publicación ISIDespite the growing literature on loyalty program (LP) research, many questions remain underexplored. Driven by advancements in information technology, marketing analytics, and consumer interface platforms (e.g., mobile devices), there have been many recent developments in LP practices around the world. They impose new challenges and create exciting opportunities for future LP research. The main objective of this paper is to identify missing links in the literature and to craft a future research agenda to advance LP research and practice. Our discussion focuses on three key areas: (1) LP designs, (2) Assessment of LP performance, and (3) Emerging trends and the impact of new technologies. We highlight several gaps in the literature and outline research opportunities in each area

    Additive Manufacturing of Devices Used for Collection and Application of Cereal Rust Urediniospores

    Get PDF
    Published ArticleOptimized inoculation procedures are an important consideration in achieving repeatable plant infection when working with biotrophic rust fungi. Several plant pathology laboratories specializing in rust research employ a system where the collection and application of fungal spores are accomplished using an exchangeable gelatin capsule. Urediniospores are collected from erumpent pustules on plant surfaces into a capsule fitted to a cyclone collector controlled by a vacuum pump. By adding light mineral oil to the same capsule, the spore suspension is then sprayed onto plants by means of a dedicated atomizer (inoculator) connected to an air pressure source. Although devices are not commercially available, modern day technologies provide an opportunity to efficiently design and manufacture collectors and inoculators. Using a process called Additive Manufacturing (AM), also known as “3D printing,” the bodies of a collector and inoculator were digitally designed and then laser-sintered in nylon. Depending on availability, copper or aluminum tubes were fitted to the bodies of both devices afterward to either facilitate directed collection of spores from rust pustules on plant surfaces or act as a siphon tube to deliver the spore suspension contained in the capsule. No statistical differences were found between AM and metal inoculators for spray delivery time or spore deposition per unit area. In replicated collection and inoculation tests of wheat seedlings with urediniospore bulks or single pustule collections of Puccinia triticina and P. graminis f. sp. tritici, the causal organisms of leaf rust and stem rust, consistent and satisfactory infection levels were achieved. Immersing used devices in acetone for 60 s followed by a 2 h heat treatment at 75 C produced no contaminant infection in follow-up tests

    Additive Manufacturing of Devices Used for Collection and Application of Cereal Rust Urediniospores

    Get PDF
    Optimized inoculation procedures are an important consideration in achieving repeatable plant infection when working with biotrophic rust fungi. Several plant pathology laboratories specializing in rust research employ a system where the collection and application of fungal spores are accomplished using an exchangeable gelatin capsule. Urediniospores are collected from erumpent pustules on plant surfaces into a capsule fitted to a cyclone collector controlled by a vacuum pump. By adding light mineral oil to the same capsule, the spore suspension is then sprayed onto plants by means of a dedicated atomizer (inoculator) connected to an air pressure source. Although devices are not commercially available, modern day technologies provide an opportunity to efficiently design and manufacture collectors and inoculators. Using a process called Additive Manufacturing (AM), also known as “3D printing,” the bodies of a collector and inoculator were digitally designed and then laser-sintered in nylon. Depending on availability, copper or aluminum tubes were fitted to the bodies of both devices afterward to either facilitate directed collection of spores from rust pustules on plant surfaces or act as a siphon tube to deliver the spore suspension contained in the capsule. No statistical differences were found between AM and metal inoculators for spray delivery time or spore deposition per unit area. In replicated collection and inoculation tests of wheat seedlings with urediniospore bulks or single pustule collections of Puccinia triticina and P. graminis f. sp. tritici, the causal organisms of leaf rust and stem rust, consistent and satisfactory infection levels were achieved. Immersing used devices in acetone for 60 s followed by a 2 h heat treatment at 75°C produced no contaminant infection in follow-up tests

    Blood and brain biochemistry and behaviour in NTBC and dietary treated tyrosinemia type 1 mice

    Get PDF
    Tyrosinemia type 1 (TT1) is a rare metabolic disease caused by a defect in the tyrosine degradation pathway. Neurocognitive deficiencies have been described in TT1 patients, that have, among others, been related to changes in plasma large neutral amino acids (LNAA) that could result in changes in brain LNAA and neurotransmitter concentrations. Therefore, this project aimed to investigate plasma and brain LNAA, brain neurotransmitter concentrations and behavior in C57 Bl/6 fumarylacetoacetate hydrolase deficient (FAH-/-) mice treated with 2-(2-nitro-4-trifluoromethylbenoyl)-1,3-cyclohexanedione (NTBC) and/or diet and wild-type mice. Plasma and brain tyrosine concentrations were clearly increased in all NTBC treated animals, even with diet (p <0.001). Plasma and brain phenylalanine concentrations tended to be lower in all FAH-/- mice. Other brain LNAA, were often slightly lower in NTBC treated FAH-/- mice. Brain neurotransmitter concentrations were usually within a normal range, although serotonin was negatively correlated with brain tyrosine concentrations (p <0.001). No clear behavioral differences between the different groups of mice could be found. To conclude, this is the first study measuring plasma and brain biochemistry in FAH-/- mice. Clear changes in plasma and brain LNAA have been shown. Further research should be done to relate the biochemical changes to neurocognitive impairments in TT1 patients

    Foundation species enhance food web complexity through non-trophic facilitation

    Get PDF
    Food webs are an integral part of every ecosystem on the planet, yet understanding the mechanisms shaping these complex networks remains a major challenge. Recently, several studies suggested that non-trophic species interactions such as habitat modification and mutualisms can be important determinants of food web structure. However, it remains unclear whether these findings generalize across ecosystems, and whether non-trophic interactions affect food webs randomly, or affect specific trophic levels or functional groups. Here, we combine analyses of 58 food webs from seven terrestrial, freshwater and coastal systems to test (1) the general hypothesis that non-trophic facilitation by habitat-forming foundation species enhances food web complexity, and (2) whether these enhancements have either random or targeted effects on particular trophic levels, functional groups, and linkages throughout the food web. Our empirical results demonstrate that foundation species consistently enhance food web complexity in all seven ecosystems. Further analyses reveal that 15 out of 19 food web properties can be well-approximated by assuming that foundation species randomly facilitate species throughout the trophic network. However, basal species are less strongly, and carnivores are more strongly facilitated in foundation species’ food webs than predicted based on random facilitation, resulting in a higher mean trophic level and a longer average chain length. Overall, we conclude that foundation species strongly enhance food web complexity through non-trophic facilitation of species across the entire trophic network. We therefore suggest that the structure and stability of food webs often depends critically on non-trophic facilitation by foundation species.</p

    An 8-gene mRNA expression profile in circulating tumor cells predicts response to aromatase inhibitors in metastatic breast cancer patients

    Get PDF
    Background: Molecular characterization of circulating tumor cells (CTC) is promising for personalized medicine. We aimed to identify a CTC gene expression profile predicting outcome to first-line aromatase inhibitors in metastatic breast cancer (MBC) patients. Methods: CTCs were isolated from 78 MBC patients before treatment start. mRNA expression levels of 96 genes were measured by quantitative reverse transcriptase polymerase chain reaction. After applying predefined exclusion criteria based on lack of sufficient RNA quality and/or quantity, the data from 45 patients were used to construct a gene expression profile to predict poor responding patients, defined as disease progression or death <9 months, by a leave-one-out cross validation. Results: Of the 45 patients, 19 were clinically classified as poor responders. To identify them, the 75 % most variable genes were used to select genes differentially expressed between good and poor responders. An 8-gene CTC predictor was significantly associated with outcome (Hazard Ratio [HR] 4.40, 95 % Confidence Interval [CI]: 2.17-8.92, P < 0.001). This predictor identified poor responding patients with a sensitivity of 63 % and a positive predictive value of 75 %, while good responding patients were correctly predicted in 85 % of the cases. In multivariate Cox regression analysis, including CTC count at baseline, the 8-gene CTC predictor was the only factor independently associated with outcome (HR 4.59 [95 % CI: 2.11-9.56], P < 0.001). This 8-gene signature was not associated with outcome in a group of 71 MBC patients treated with systemic treatments other than AI. Conclusions: An 8-gene CTC predictor was identified which discriminates good and poor outcome to first-line aromatase inhibitors in MBC patients. Although results need to be validated, this study underscores the potential of molecular characterization of CTCs
    corecore