1,440 research outputs found

    Regulator of G-Protein Signaling 14 (RGS14) Is a Selective H-Ras Effector

    Get PDF
    Background: Regulator of G-protein signaling (RGS) proteins have been well-described as accelerators of Ga-mediated GTP hydrolysis (β€˜β€˜GTPase-accelerating proteins’’ or GAPs). However, RGS proteins with complex domain architectures are now known to regulate much more than Ga GTPase activity. RGS14 contains tandem Ras-binding domains that have been reported to bind to Rap- but not Ras GTPases in vitro, leading to the suggestion that RGS14 is a Rap-specific effector. However, more recent data from mammals and Drosophila imply that, in vivo, RGS14 may instead be an effector of Ras.Methodology/Principal Findings: Full-length and truncated forms of purified RGS14 protein were found to bind indiscriminately in vitro to both Rap- and Ras-family GTPases, consistent with prior literature reports. In stark contrast, however, we found that in a cellular context RGS14 selectively binds to activated H-Ras and not to Rap isoforms. Co- transfection / co-immunoprecipitation experiments demonstrated the ability of full-length RGS14 to assemble a multiprotein complex with components of the ERK MAPK pathway in a manner dependent on activated H-Ras. Small interfering RNA-mediated knockdown of RGS14 inhibited both nerve growth factor- and basic fibrobast growth factor- mediated neuronal differentiation of PC12 cells, a process which is known to be dependent on Ras-ERK signaling.Conclusions/Significance: In cells, RGS14 facilitates the formation of a selective Ras?GTP-Raf-MEK-ERK multiprotein complex to promote sustained ERK activation and regulate H-Ras-dependent neuritogenesis. This cellular function for RGS14 is similar but distinct from that recently described for its closely-related paralogue, RGS12, which shares the tandem Ras- binding domain architecture with RGS14

    Telomere disruption results in non-random formation of de novo dicentric chromosomes involving acrocentric human chromosomes

    Get PDF
    Copyright: Β© 2010 Stimpson et al.Genome rearrangement often produces chromosomes with two centromeres (dicentrics) that are inherently unstable because of bridge formation and breakage during cell division. However, mammalian dicentrics, and particularly those in humans, can be quite stable, usually because one centromere is functionally silenced. Molecular mechanisms of centromere inactivation are poorly understood since there are few systems to experimentally create dicentric human chromosomes. Here, we describe a human cell culture model that enriches for de novo dicentrics. We demonstrate that transient disruption of human telomere structure non-randomly produces dicentric fusions involving acrocentric chromosomes. The induced dicentrics vary in structure near fusion breakpoints and like naturally-occurring dicentrics, exhibit various inter-centromeric distances. Many functional dicentrics persist for months after formation. Even those with distantly spaced centromeres remain functionally dicentric for 20 cell generations. Other dicentrics within the population reflect centromere inactivation. In some cases, centromere inactivation occurs by an apparently epigenetic mechanism. In other dicentrics, the size of the alpha-satellite DNA array associated with CENP-A is reduced compared to the same array before dicentric formation. Extrachromosomal fragments that contained CENP-A often appear in the same cells as dicentrics. Some of these fragments are derived from the same alpha-satellite DNA array as inactivated centromeres. Our results indicate that dicentric human chromosomes undergo alternative fates after formation. Many retain two active centromeres and are stable through multiple cell divisions. Others undergo centromere inactivation. This event occurs within a broad temporal window and can involve deletion of chromatin that marks the locus as a site for CENP-A maintenance/replenishment.This work was supported by the Tumorzentrum Heidelberg/Mannheim grant (D.10026941)and by March of Dimes Research Foundation grant #1-FY06-377 and NIH R01 GM069514

    Esperanto for histones : CENP-A, not CenH3, is the centromeric histone H3 variant

    Get PDF
    The first centromeric protein identified in any species was CENP-A, a divergent member of the histone H3 family that was recognised by autoantibodies from patients with scleroderma-spectrum disease. It has recently been suggested to rename this protein CenH3. Here, we argue that the original name should be maintained both because it is the basis of a long established nomenclature for centromere proteins and because it avoids confusion due to the presence of canonical histone H3 at centromeres

    A national clinical decision support infrastructure to enable the widespread and consistent practice of genomic and personalized medicine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In recent years, the completion of the Human Genome Project and other rapid advances in genomics have led to increasing anticipation of an era of genomic and personalized medicine, in which an individual's health is optimized through the use of all available patient data, including data on the individual's genome and its downstream products. Genomic and personalized medicine could transform healthcare systems and catalyze significant reductions in morbidity, mortality, and overall healthcare costs.</p> <p>Discussion</p> <p>Critical to the achievement of more efficient and effective healthcare enabled by genomics is the establishment of a robust, nationwide clinical decision support infrastructure that assists clinicians in their use of genomic assays to guide disease prevention, diagnosis, and therapy. Requisite components of this infrastructure include the standardized representation of genomic and non-genomic patient data across health information systems; centrally managed repositories of computer-processable medical knowledge; and standardized approaches for applying these knowledge resources against patient data to generate and deliver patient-specific care recommendations. Here, we provide recommendations for establishing a national decision support infrastructure for genomic and personalized medicine that fulfills these needs, leverages existing resources, and is aligned with the <it>Roadmap for National Action on Clinical Decision Support </it>commissioned by the U.S. Office of the National Coordinator for Health Information Technology. Critical to the establishment of this infrastructure will be strong leadership and substantial funding from the federal government.</p> <p>Summary</p> <p>A national clinical decision support infrastructure will be required for reaping the full benefits of genomic and personalized medicine. Essential components of this infrastructure include standards for data representation; centrally managed knowledge repositories; and standardized approaches for leveraging these knowledge repositories to generate patient-specific care recommendations at the point of care.</p

    Elevated levels of numerous cytokines in drainage fluid after primary total hip arthroplasty

    Get PDF
    As cytokines are involved in wound healing and other inflammatory processes, it could be valuable to measure their levels at the operative site. This study was conducted to investigate whether different cytokines are measurable in drainage fluid and, when measurable, whether we can find a difference in cytokine levels between one and six hours postoperatively. Samples from the drainage system in 30 consecutive patients undergoing primary total hip replacement were collected at one and six hours after closure of the wound. Levels of several cytokines were measured in the drainage fluids. A significant elevation of almost all cytokines was observed between the sample after one hour and six hours postoperatively. We found a strong correlation between the different pro-inflammatory cytokines. The IL-6 to IL-10 ratio were also raised, showing a pro-inflammatory predominance. Levels were much higher than those previously shown in serum

    An RNA Polymerase III-Dependent Heterochromatin Barrier at Fission Yeast Centromere 1

    Get PDF
    Heterochromatin formation involves the nucleation and spreading of structural and epigenetic features along the chromatin fiber. Chromatin barriers and associated proteins counteract the spreading of heterochromatin, thereby restricting it to specific regions of the genome. We have performed gene expression studies and chromatin immunoprecipitation on strains in which native centromere sequences have been mutated to study the mechanism by which a tRNAAlanine gene barrier (cen1 tDNAAla) blocks the spread of pericentromeric heterochromatin at the centromere of chromosome 1 (cen1) in the fission yeast, Schizosaccharomyces pombe. Within the centromere, barrier activity is a general property of tDNAs and, unlike previously characterized barriers, requires the association of both transcription factor IIIC and RNA Polymerase III. Although the cen1 tDNAAla gene is actively transcribed, barrier activity is independent of transcriptional orientation. These findings provide experimental evidence for the involvement of a fully assembled RNA polymerase III transcription complex in defining independent structural and functional domains at a eukaryotic centromere

    An Oral Recombinant Vaccine in Dogs against Echinococcus granulosus, the Causative Agent of Human Hydatid Disease: A Pilot Study

    Get PDF
    Dogs are the main source of human cystic echinococcosis. An oral vaccine would be an important contribution to control programs in endemic countries. We conducted two parallel experimental trials in Morocco and Tunisia of a new oral vaccine candidate against Echinococcus granulosus in 28 dogs. The vaccine was prepared using two recombinant proteins from adult worms, a tropomyosin (EgTrp) and a fibrillar protein similar to paramyosin (EgA31), cloned and expressed in a live attenuated strain of Salmonella enterica serovar typhimurium

    The tale of TILs in breast cancer : a report from The International Immuno-Oncology Biomarker Working Group

    Get PDF
    The advent of immune-checkpoint inhibitors (ICI) in modern oncology has significantly improved survival in several cancer settings. A subgroup of women with breast cancer (BC) has immunogenic infiltration of lymphocytes with expression of programmed death-ligand 1 (PD-L1). These patients may potentially benefit from ICI targeting the programmed death 1 (PD-1)/PD-L1 signaling axis. The use of tumor-infiltrating lymphocytes (TILs) as predictive and prognostic biomarkers has been under intense examination. Emerging data suggest that TILs are associated with response to both cytotoxic treatments and immunotherapy, particularly for patients with triple-negative BC. In this review from The International Immuno-Oncology Biomarker Working Group, we discuss (a) the biological understanding of TILs, (b) their analytical and clinical validity and efforts toward the clinical utility in BC, and (c) the current status of PD-L1 and TIL testing across different continents, including experiences from low-to-middle-income countries, incorporating also the view of a patient advocate. This information will help set the stage for future approaches to optimize the understanding and clinical utilization of TIL analysis in patients with BC
    • …
    corecore