144 research outputs found

    Designing high-performance superconductors with nanoparticle inclusions: Comparisons to strong pinning theory

    Get PDF
    One of the most promising routes for achieving high critical currents in superconductors is to incorporate dispersed, non-superconducting nanoparticles to control the dissipative motion of vortices. However, these inclusions reduce the overall superconducting volume and can strain the interlaying superconducting matrix, which can detrimentally reduce Tc_{c}. Consequently, an optimal balance must be achieved between the nanoparticle density np_{p} and size d. Determining this balance requires garnering a better understanding of vortex–nanoparticle interactions, described by strong pinning theory. Here, we map the dependence of the critical current on nanoparticle size and density in (Y0.77_{0.77}, Gd0.23_{0.23})Ba2_{2}Cu3_{3}O7δ_{7−δ} films in magnetic fields of up to 35 T and compare the trends to recent results from time-dependent Ginzburg–Landau simulations. We identify consistency between the field-dependent critical current Jc_{c} (B) and expectations from strong pinning theory. Specifically, we find that Jc_{c} ∝ Bα^{−α }, where α decreases from 0.66 to 0.2 with increasing density of nanoparticles and increases roughly linearly with nanoparticle size d/ξ (normalized to the coherence length). At high fields, the critical current decays faster (∼BZ1^{Z-1}), suggesting that each nanoparticle has captured a vortex. When nanoparticles capture more than one vortex, a small, high-field peak is expected in Jc(B). Due to a spread in defect sizes, this novel peak effect remains unresolved here. Finally, we reveal that the dependence of the vortex creep rate S on nanoparticle size and density roughly mirrors that of α, and we compare our results to low-T nonlinearities in S(T) that are predicted by strong pinning theory

    Elastoresistivity in the incommensurate charge density wave phase of BaNi₂(As₁₋ₓPₓ)₂

    Get PDF
    Electronic nematicity, the breaking of the crystal lattice rotational symmetry by the electronic fluid, is a fascinating quantum state of matter. In this work, using electronic transport under strain we investigate the electronic nematicity of BaNi2_2(As1x_{1−x}Px_x)2_2, a candidate system for charge-induced nematicity. We report a large B1g_{1g} elastoresistance coefficient that is maximized at the tetragonal-to-orthorhombic transition temperature, that slightly precedes the first-order triclinic transition. An hysteretic behavior is observed in the resistance versus strain sweeps and interpreted as the pinning of orthorhombic domains. Remarkably, the elastoresistance only onsets together with a strong enhancement of the incommensurate charge density wave of the material, strongly suggesting that this electronic instability is uniaxial in nature and drive the orthorhombic transition. The absence of sizeable elastoresistance above this electronic phase clearly contrasts dynamic and static electronic nematicity. Finally, the elastoresistance temperature dependence that strongly differs from the Curie-Weiss form of iron-based superconductors reveals major differences for the respective coupling of electronic nematicity to the lattice. Our results uncover an extremely strain-sensitive platform to study electronic anisotropy induced by a charge-density-wave instability

    MicroRNA-Integrated and Network-Embedded Gene Selection with Diffusion Distance

    Get PDF
    Gene network information has been used to improve gene selection in microarray-based studies by selecting marker genes based both on their expression and the coordinate expression of genes within their gene network under a given condition. Here we propose a new network-embedded gene selection model. In this model, we first address the limitations of microarray data. Microarray data, although widely used for gene selection, measures only mRNA abundance, which does not always reflect the ultimate gene phenotype, since it does not account for post-transcriptional effects. To overcome this important (critical in certain cases) but ignored-in-almost-all-existing-studies limitation, we design a new strategy to integrate together microarray data with the information of microRNA, the major post-transcriptional regulatory factor. We also handle the challenges led by gene collaboration mechanism. To incorporate the biological facts that genes without direct interactions may work closely due to signal transduction and that two genes may be functionally connected through multi paths, we adopt the concept of diffusion distance. This concept permits us to simulate biological signal propagation and therefore to estimate the collaboration probability for all gene pairs, directly or indirectly-connected, according to multi paths connecting them. We demonstrate, using type 2 diabetes (DM2) as an example, that the proposed strategies can enhance the identification of functional gene partners, which is the key issue in a network-embedded gene selection model. More importantly, we show that our gene selection model outperforms related ones. Genes selected by our model 1) have improved classification capability; 2) agree with biological evidence of DM2-association; and 3) are involved in many well-known DM2-associated pathways

    Medium Chain Fatty Acids Are Selective Peroxisome Proliferator Activated Receptor (PPAR) γ Activators and Pan-PPAR Partial Agonists

    Get PDF
    Thiazolidinediones (TZDs) act through peroxisome proliferator activated receptor (PPAR) γ to increase insulin sensitivity in type 2 diabetes (T2DM), but deleterious effects of these ligands mean that selective modulators with improved clinical profiles are needed. We obtained a crystal structure of PPARγ ligand binding domain (LBD) and found that the ligand binding pocket (LBP) is occupied by bacterial medium chain fatty acids (MCFAs). We verified that MCFAs (C8–C10) bind the PPARγ LBD in vitro and showed that they are low-potency partial agonists that display assay-specific actions relative to TZDs; they act as very weak partial agonists in transfections with PPARγ LBD, stronger partial agonists with full length PPARγ and exhibit full blockade of PPARγ phosphorylation by cyclin-dependent kinase 5 (cdk5), linked to reversal of adipose tissue insulin resistance. MCFAs that bind PPARγ also antagonize TZD-dependent adipogenesis in vitro. X-ray structure B-factor analysis and molecular dynamics (MD) simulations suggest that MCFAs weakly stabilize C-terminal activation helix (H) 12 relative to TZDs and this effect is highly dependent on chain length. By contrast, MCFAs preferentially stabilize the H2-H3/β-sheet region and the helix (H) 11-H12 loop relative to TZDs and we propose that MCFA assay-specific actions are linked to their unique binding mode and suggest that it may be possible to identify selective PPARγ modulators with useful clinical profiles among natural products
    corecore