45 research outputs found

    The impact of the new Earth gravity models on the measurement of the Lense-Thirring effect with a new satellite

    Full text link
    In this paper we investigate the opportunities offered by the new Earth gravity models from the dedicated CHAMP and, especially, GRACE missions to the project of measuring the general relativistic Lense-Thirring effect with a new Earth's artificial satellite. It turns out that it would be possible to abandon the stringent, and expensive, requirements on the orbital geometry of the originally prosed LARES mission (same semimajor axis a=12270 km of the existing LAGEOS and inclination i=70 deg) by inserting the new spacecraft in a relatively low, and cheaper, orbit (a=7500-8000 km, i\sim 70 deg) and suitably combining its node Omega with those of LAGEOS and LAGEOS II in order to cancel out the first even zonal harmonic coefficients of the multipolar expansion of the terrestrial gravitational potential J_2, J_4 along with their temporal variations. The total systematic error due to the mismodelling in the remaining even zonal harmonics would amount to \sim 1% and would be insensitive to departures of the inclination from the originally proposed value of many degrees. No semisecular long-period perturbations would be introduced because the period of the node, which is also the period of the solar K_1 tidal perturbation, would amount to \sim 10^2 days. Since the coefficient of the node of the new satellite would be smaller than 0.1 for such low altitudes, the impact of the non-gravitational perturbations of it on the proposed combination would be negligible. Then, a particular financial and technological effort for suitably building the satellite in order to minimize the non-conservative accelerations would be unnecessary.Comment: LaTex2e, 28 pages, 2 tables, 8 figures. To appear in New Astronom

    Testing General Relativity with Satellite Laser Ranging: Recent Developments

    Get PDF
    In this paper the most recent developments in testing General Relativity in the gravitational field of the Earth with the technique of Satellite Laser Ranging are presented. In particular, we concentrate our attention on some gravitoelectric and gravitomagnetic post--Newtonian orbital effects on the motion of a test body in the external field of a central mass.Comment: Latex2e, 10 pages, no figures, no tables. Paper presented at COSPAR2002 conference held in Houston, TX, from 10 October 2002 to 19 October 2002. To appear in Advance in Space Research. References added and update

    On the reliability of the so far performed tests for measuring the Lense-Thirring effect with the LAGEOS satellites

    Full text link
    In this paper we will show in detail that the performed attempts aimed at the detection of the general relativistic Lense-Thirring effect in the gravitational field of the Earth with the existing LAGEOS satellites are often presented in an optimistic and misleading way which is inadequate for such an important test of fundamental physics. E.g., in the latest reported measurement of the gravitomagnetic shift with the nodes of the LAGEOS satellites and the 2nd generation GRACE-only EIGEN-GRACE02S Earth gravity model over an observational time span of 11 years a 5-10% total accuracy is claimed at 1-3sigma, respectively. We will show that, instead, it might be 15-45% (1-3sigma) if the impact of the secular variations of the even zonal harmonics is considered as well.Comment: LaTex2e, 22 pages, 1 figure, 1 table, 60 references. Conclusions and Table of Contents added. Estimates of the impact of J6dot on the node-node-perigee combination presented. Typos corrected and minor stylistic changes. Small changes due to G. Melki useful remarks. Lense-Thirring 'memory' effect in EIGEN-GRACE02S discusse

    First preliminary tests of the general relativistic gravitomagnetic field of the Sun and new constraints on a Yukawa-like fifth force from planetary data

    Full text link
    The general relativistic Lense-Thirring precessions of the perihelia of the inner planets of the Solar System are about 10^-3 arcseconds per century. Recent improvements in planetary orbit determination may yield the first observational evidence of such a tiny effect. Indeed, corrections to the known perihelion rates of -0.0036 +/- 0.0050, -0.0002 +/- 0.0004 and 0.0001 +/- 0.0005 arcseconds per century were recently estimated by E.V. Pitjeva for Mercury, the Earth and Mars, respectively, on the basis of the EPM2004 ephemerides and a set of more than 317,000 observations of various kinds. The predicted relativistic Lense-Thirring precessions for these planets are -0.0020, -0.0001 and -3 10^-5 arcseconds per century, respectively and are compatible with the determined perihelia corrections. The relativistic predictions fit better than the zero-effect hypothesis, especially if a suitable linear combination of the perihelia of Mercury and the Earth, which a priori cancels out any possible bias due to the solar quadrupole mass moment, is considered. However, the experimental errors are still large. Also the latest data for Mercury processed independently by Fienga et al. with the INPOP ephemerides yield preliminary insights about the existence of the solar Lense-Thirring effect. The data from the forthcoming planetary mission BepiColombo will improve our knowledge of the orbital motion of this planet and, consequently, the precision of the measurement of the Lense-Thirring effect. As a by-product of the present analysis, it is also possible to constrain the strength of a Yukawa-like fifth force to a 10^-12-10^-13 level at scales of about one Astronomical Unit (10^11 m).Comment: LaTex, 22 pages, 1 figure, 5 tables, 62 references. To appear in Planetary and Space Scienc

    On the possibility of measuring relativistic gravitational effects with a LAGEOS-LAGEOS II-OPTIS-mission

    Full text link
    In this paper we wish to preliminary investigate if it would be possible to use the orbital data from the proposed OPTIS mission together with those from the existing geodetic passive SLR LAGEOS and LAGEOS II satellites in order to perform precise measurements of some general relativistic gravitoelectromagnetic effects, with particular emphasis on the Lense-Thirring effect.Comment: Abridged version. 16 pages, no figures, 1 table. First results from the GGM01C Earth gravity model. GRACE data include

    How to reach a few percent level in determining the Lense-Thirring effect?

    Full text link
    In this paper we discuss and compare a node-only LAGEOS-LAGEOS II combination and a node-only LAGEOS-LAGEOS II-Ajisai-Jason1 combination for the determination of the Lense-Thirring effect. The new combined EIGEN-CG01C Earth gravity model has been adopted. The second combination cancels the first three even zonal harmonics along with their secular variations but introduces the non-gravitational perturbations of Jason1. The first combination is less sensitive to the non-conservative forces but is sensitive to the secular variations of the uncancelled even zonal harmonics of low degree J4 and J6 whose impact grows linearly in time.Comment: Latex2e, 22 pag. 1 table, 2 figures, 45 references. Changes in the Abstract, Introduction and Conclusions. Discussion on the non-gravitational perturbations on Ajisai and on the impact of the secular rates of the even zonal harmonics added. EIGEN-CG01C CHAMP+GRACE+terrestrial gravimetry/altimetry Earth gravity model used. Reference adde

    LARES/WEBER-SAT and the equivalence principle

    Full text link
    It has often been claimed that the proposed Earth artificial satellite LARES/WEBER-SAT-whose primary goal is, in fact, the measurement of the general relativistic Lense-Thirring effect at a some percent level-would allow to greatly improve, among (many) other things, the present-day (10^-13) level of accuracy in testing the equivalence principle as well. Recent claims point towards even two orders of magnitude better, i.e. 10^-15. In this note we show that such a goal is, in fact, unattainable by many orders of magnitude being, instead, the achievable level of the order of 10^-9.Comment: LaTex, 4 pages, no figures, no tables, 26 references. Proofs corrections included. To appear in EPL (Europhysics Letters

    Diabetes mellitus and prostate cancer risk among older men: population-based case–control study

    Get PDF
    We investigate the relation between diabetes mellitus and risk of prostate cancer among older (age 65–79 years) men in a population-based case–control study of 407 incident histologically confirmed cases registered in the South Carolina Central Cancer Registry between 1999 and 2001 (70.6% response rate); controls were 393 men identified through the Health Care Financing Administration Medicare beneficiary file for South Carolina in 1999 (63.8% response rate). After adjusting for age, race, and prostate cancer screening in the past 5 years, a history of diabetes mellitus was associated with a reduced risk of prostate cancer (adjusted odds ratio (aOR)¼0.64; 95% confidence interval (CI)¼0.45, 0.91). The protective effect was stronger for those with complications associated with diabetes (aOR¼0.61; 95% CI¼0.42, 0.90) and for African-American men (aOR¼0.36; 95% CI¼0.21, 0.62). Additional research is needed to understand the biologic mechanisms by which diabetes may influence prostate cancer risk; genetic factors may play an important role in understanding this association

    Phenomenology of the Lense-Thirring effect in the Solar System

    Full text link
    Recent years have seen increasing efforts to directly measure some aspects of the general relativistic gravitomagnetic interaction in several astronomical scenarios in the solar system. After briefly overviewing the concept of gravitomagnetism from a theoretical point of view, we review the performed or proposed attempts to detect the Lense-Thirring effect affecting the orbital motions of natural and artificial bodies in the gravitational fields of the Sun, Earth, Mars and Jupiter. In particular, we will focus on the evaluation of the impact of several sources of systematic uncertainties of dynamical origin to realistically elucidate the present and future perspectives in directly measuring such an elusive relativistic effect.Comment: LaTex, 51 pages, 14 figures, 22 tables. Invited review, to appear in Astrophysics and Space Science (ApSS). Some uncited references in the text now correctly quoted. One reference added. A footnote adde

    The Confrontation between General Relativity and Experiment

    Get PDF
    The status of experimental tests of general relativity and of theoretical frameworks for analysing them is reviewed. Einstein's equivalence principle (EEP) is well supported by experiments such as the Eotvos experiment, tests of special relativity, and the gravitational redshift experiment. Future tests of EEP and of the inverse square law are searching for new interactions arising from unification or quantum gravity. Tests of general relativity at the post-Newtonian level have reached high precision, including the light deflection, the Shapiro time delay, the perihelion advance of Mercury, and the Nordtvedt effect in lunar motion. Gravitational-wave damping has been detected in an amount that agrees with general relativity to better than half a percent using the Hulse-Taylor binary pulsar, and other binary pulsar systems have yielded other tests, especially of strong-field effects. When direct observation of gravitational radiation from astrophysical sources begins, new tests of general relativity will be possible.Comment: 89 pages, 8 figures; an update of the Living Review article originally published in 2001; final published version incorporating referees' suggestion
    corecore